首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Texture is an important factor which affects the coating properties. Chemical composition of the zinc bath can strongly influence the texture of hot-dip galvanized coatings. In this study, lead content of the zinc bath was changed from 0.01 wt.% to 0.11 wt.%. Specimens were prepared from zinc baths of different lead content and its texture was evaluated using X-ray diffraction. Corrosion behaviour was analyzed by Tafel extrapolation and linear polarization tests. To study the corrosion products of the specimens, salt spray test was employed. Also, the spangle size of the specimens was determined using line intercept method. From the experimental results it was found that (00.2) basal plane texture component would be weakened by increasing the lead content of the zinc and conversely, (20.1) high angle pyramidal texture components strengthened. Besides, coatings with strong (00.2) texture component and weaker (20.1) component have better corrosion resistance than the coatings with weak (00.2) and strong (20.1) texture components. In addition, surface morphology would be changed and presence of basal planes decreases at the coating surface due to the increase of lead in the zinc bath. Furthermore, spangle size would be increased by increasing the lead content of the zinc bath. Investigation on the effects of skin pass rolling showed that in this case, (00.2) basal texture component and corrosion resistance of the skin passed specimens, in comparison with non-skin passed specimens, have been decreased.  相似文献   

2.
Hot-dip galvanized zinc coating is the most frequently used among coatings to protect steel against corrosion. When coated steel sheets are subjected to a corrosive environment, its corrosion behaviour is affected by texture and microstructure variations. The aim of this research work was to study the texture and corrosion resistance of hot-dip galvanized zinc coatings affected by the coating thickness and chemical composition of the zinc bath. Texture of the coatings was evaluated employing X-ray diffraction whilst its corrosion behaviour was analyzed using Tafel polarization test. Experimental results showed that (00.2) basal texture component would be weakened by increasing the lead content of the zinc bath and coatings with strong (00.2) texture component have lower corrosion current density than the coatings with weak (00.2) texture component. Furthermore, it was inferred that by increasing the thickness of the coatings with the same content of lead in the zinc bath, the relative intensity of (00.2) texture component and corrosion resistance of the coatings would be decreased and conversely, relative intensity of (20.1) high angle pyramidal planes and (10.0) prism planes would be increased due to establish a balance between surface and strain energies. Besides, five types of morphology were observed on the surface of hot-dip galvanized coatings in dull and bright spangles. Finally, it was recognized that the main corrosion product of the salt spray test is Simonkolleite.  相似文献   

3.
The paper is devoted to the structure, composition and properties investigations of coatings obtained from a sulfate trivalent chromium bath containing formic acid and carbamide as the complexing agents. The results indicate that the deposits have a nanocrystalline type of structure—there are regions with atomic ordered arrangement in bulk material with the average size of 3-5 nm. Carbon is present as chromium carbide within the coating and it is distributed uniformly inside of the deposit. The deposits under study exhibit particular electrochemical behavior (absence of the active dissolution range in acid solution). The hardness of these coatings does not differ noticeably from that typical of coatings obtained in Cr(VI)-based baths. The wear characteristics of the deposits from the proposed bath are somewhat better than in the case of a common hexavalent chromium bath.  相似文献   

4.
Ternary electroless Ni–Cu–P alloy films were deposited by using nickel sulphate (B1)- and nickel chloride (B2)-based alkaline baths. Alloy films were characterized for their structure, morphology, chemical composition and microhardness. A single broad peak was obtained in XRD for both B1 and B2 films and the calculated grain sizes are 1.6 and 1.9 nm, respectively. Optical microscopic examination of the deposited coatings revealed a less nodular structure for B2-based coatings. SEM micrographs showed that films were smooth and nodular. Compositional analysis made on these deposits using EDX and the chemical state identification by XPS showed that the coatings are almost identical. AFM studies showed that the deposits from B2 bath are comparatively smoother with less nodular structure. Microhardness measurements and potentiodynamic polarization studies in 3.5% NaCl solution showed that both deposits have similar properties.  相似文献   

5.
Two groups of transparent conductive ZnO/Ag/ZnO, ZAZ, multilayer coatings were successively deposited by direct current (DC) magnetron sputtering. Sputtering was carried out from zinc (Zn) and silver (Ag) metallic targets. The effects of Ag layer thickness and ZnO top layer thickness on the properties of the ZAZ multilayer system were examined using different analytical methods. The influences of the Ag layer thickness and ZnO top layer thickness on structural properties were studied using X-ray diffraction. The thicknesses of ZAZ multilayer system were determined using X-ray reflectometry. A sheet resistance of 2.3 Ω/sq at an Ag layer thickness of 17.7 nm was obtained. The sheet resistance changes slightly with ZnO top layer thickness. The optical properties of the films were analyzed. Both Ag layer thickness and ZnO top layer thickness affect transmittance. The optical constants of the ZAZ multilayer system were calculated from transmittance and reflectance measurements. The figure of merit was applied on the ZAZ coatings and the most suitable films for the application as transparent conductive electrodes were determined.  相似文献   

6.
Neodymium conversion films are directly deposited on the surface of zinc powder by means of ultrasonic impregnation to prepare the modified electrode material in order to obtain high-performance zinc electrodes applied in alkaline medium. Scanning electron microscopy, X-ray diffraction and other characterization techniques are used to analyze the formation and distribution of neodymium conversion coatings imposing different methods and process parameters. Simultaneously, the electrochemical properties of corresponding zinc electrodes are also studied through potentiodynamic polarization and cyclic voltammetry. Results demonstrate that the distribution features of neodymium conversion layers are changed by adjusting ultrasonic time and irradiation power, which contributes to different enhancement extents for the electrochemical performance of zinc electrodes. Especially, the neodymium conversion coatings generated by ultrasonic impregnation at an ultrasonic power of 550 W for an irradiation time of 10 min play a very efficient role in obtaining fine corrosion resistance and persistent cycle behavior of zinc electrode. Besides, ultrasonic impregnation is verified to have a great advantage, as compared with simple impregnation, because the neodymium conversion layers formed under the action of ultrasonic agitation and cavitation phenomenon can obviously improve the electrochemical performance of zinc electrodes.  相似文献   

7.
Transparent conductive oxide (TCO) thin films play a significant role in recent optical technologies. Displays of various types, photovoltaic systems, and opto-electronic devices use these films as transparent signal electrodes. They are used as heating surfaces and active control layers. Oxides of TCO materials such as: tin, indium, zinc, cadmium, titanium and the like, exhibit their properties. However, indium oxide and indium oxide doped with tin (ITO) coatings are the most used in this technology.In this work, we present conductive transparent indium oxide thin films which were prepared using a novel triode sputtering method. A pure In2O3 target of 2 in. in diameter was used in a laboratory triode sputtering system. This system provided plane plasma discharge at a relatively low pressure 0.5-5 mTorr of pure argon. The substrate temperature was varied during the experiments from room temperature up to 200 °C. The films were deposited on glass, silicon, and flexible polyimide substrates. The films were characterized for optical and electrical properties and compared with the indium oxide films deposited by magnetron sputtering.  相似文献   

8.
Ceramic coatings were formed on Ti6Al4V alloy surface by microarc oxidation (MAO) in a Na2SiO3 system solution. Unlubricated, smear oil and oil bath lubricated fretting tests were performed on MAO coatings against 52100 steel on a fretting wear tester. Microstructural investigation of the worn surfaces was performed and the wear mechanisms were studied. The results show that the coatings are mainly composed of rutile and a small amount of anatase TiO2, both in nano grain structure. Friction coefficient of microarc oxidation coatings under oil bath lubrication was significantly reduced, favorable stable at 0.15, which indicates that the coatings with oil lubricated lowered the shear and adhesive stresses between contact surfaces, consequently alleviating the possibility of initiation and propagation of cracks in the inner layer of the coating or titanium alloy substrate.  相似文献   

9.
Nanosized TiO2 particles were prepared by sol-gel method. The TiO2 particles were co-deposited with zinc from a sulphate bath at pH 4.5 using electrodeposition technique. The corrosion behavior of the coatings was assessed by electrochemical polarization, impedance, weight-loss and salt spray tests. Wear resistance and microhardness of the composite coating was measured. The smaller grain size of the composite coatings was observed in the presence of TiO2 and it was confirmed by the images of scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques.  相似文献   

10.
Electrochemical studies of zinc-nickel codeposition in sulphate bath   总被引:1,自引:0,他引:1  
The electrodeposition of Zn-Ni alloys from a sulphate bath was studied under different conditions. The bath had the composition 0.40 M sodium sulphate, 0.01 M sulphuric acid, 0.16 M boric acid, 0.20 M zinc sulphate and 0.20 M nickel sulphate. It is found that the plating bath temperature has a great effect on the cyclic voltammograms, galvanostatic measurements during electrodeposition, and consequently linear polarization resistance for corrosion study and the alloy composition. Under the examined conditions, the electrodeposition of the alloys was of anomalous type. X-ray diffraction measurements revealed that the alloys consisted of the δ-phase (Ni3Zn22) or a mixture of the two phases δ and γ (Ni5Zn21). The comparison between Ni deposition and Zn-Ni codeposition revealed that the remarkable inhibition of Ni deposition takes place due to the presence of Zn2+ in the plating bath. The Ni deposition starts at −0.85 V in the bath of Ni deposition only, but the deposition starts at more negative potentials in the codeposition bath although the concentration of Ni2+ is the same in the both baths.  相似文献   

11.
The Ni-P/Ni-B duplex coatings were deposited on AZ91D magnesium alloy by electroless plating process and their structure, morphology, microhardness and corrosion resistance were evaluated. The duplex coatings were prepared using dual baths (acidic hypophosphite- and alkaline borohydride-reduced electroless nickel baths) with Ni-P as the inner layer. The coatings were amorphous in as-plated condition and crystallized and produced nickel borides upon heat-treatment. SEM observations showed that the duplex interface on the magnesium alloy was uniform and the compatibility between the layers was good. The Ni-P/Ni-B coatings microhardness and corrosion resistance of having Ni-B coating as the outer layer was higher than Ni-P coatings. The Ni-P/Ni-B duplex coatings on AZ91D magnesium alloy with high hardness and good corrosion resistance properties would expand their scope of applications.  相似文献   

12.
Electrodeposition of Pb-free Sn alloys in pulsed current   总被引:2,自引:0,他引:2  
A pulsed electrodeposition method is applied to the preparation of Pb-free Sn alloys solder bumps for flip-chip bonding with the aid of a photolithography. Sn-Ag alloy films with near eutectic compositions (Sn-3.5% Ag) were obtained using a pyrophosphate-iodide plating baths regardless under direct or pulsed current. The composition and the morphology of electrodeposits were examinated by SEM and X-ray photoelectron spectroscopy (XPS). The main results revealed that the organic additives affect the electrochemical reduction of tin-silver and the direct consequence on making Sn-Ag alloy is a decreased deposition rate. However, the addition of additives in the plating bath suppressed the dendritic tin-silver growth by adsorption on the deposited surface. Pulsed electrodeposition is shown to be an interesting approach to elaborate bumps with smooth and homogeneous surfaces.  相似文献   

13.
The quantum thermalization of the Jaynes–Cummings (JC) model in both equilibrium and non-equilibrium open-system cases is studied, in which the two subsystems, a two-level system and a single-mode bosonic field, are in contact with either two individual heat baths or a common heat bath. It is found that in the individual heat-bath case, the JC model can only be thermalized when either the two heat baths have the same temperature or the coupling of the JC system to one of the two baths is turned off. In the common heat-bath case, the JC system can be thermalized irrespective of the bath temperature and the system–bath coupling strengths. The thermal entanglement in this system is also studied. A counterintuitive phenomenon of vanishing thermal entanglement in the JC system is found and proved.  相似文献   

14.
We present a method for metal coating optical fiber and in-fiber Bragg grating. The technology process which is based on electroless plating and electroplating method is described in detail. The fiber is firstly coated with a thin copper or nickel plate with electroless plating method. Then, a thicker nickel plate is coated on the surface of the conductive layer. Under the optimum conditions, the surfaces of chemical plating and electroplating coatings are all smooth and compact. There is no visible defect found in the cross-section. Using this two-step metallization method, the in-fiber Bragg grating can be well protected and its thermal sensitivity can be enhanced. After the metallization process, the fiber sensor is successfully embedded in the 42CrMo steel by brazing method. Thus a smart metal structure is achieved. The embedding results show that the plating method for metallization protection of in-fiber Bragg grating is effective.  相似文献   

15.
The dynamics of passive colloidal tracers in a bath of self-propelled particles is receiving a lot of attention in the context of nonequilibrium statistical mechanics. Here we demonstrate that active baths are also capable of mediating effective interactions between suspended bodies. In particular we observe that a bath of swimming bacteria gives rise to a short range attraction similar to depletion forces in equilibrium colloidal suspensions. Using numerical simulations and experiments we show how the features of this interaction arise from the combination of nonequilibrium dynamics (peculiar of bacterial baths) and excluded volume effects.  相似文献   

16.
The main purpose of this study is to develop trivalent chromium, Cr(III), conversion coatings on aluminum alloys. The influence of Cr(III) concentration and immersion time on structures and anticorrosive performance of the coatings has been investigated. Corrosion behaviors of the coatings were evaluated in a 0.5 M H2SO4 aqueous solution at room temperature using potentiodynamic polarization. The structure and valence state of the coatings were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The addition of Cr(III) ions to the conversion bath considerably changes structures and compositions of the coatings. The coatings with Cr oxides possess a denser and thinner structure. Moreover, the corrosion resistance of Cr(III) coatings tends to decline with increasing immersion time due to the dissolution of coatings in the dipping period. According to XPS analysis, the Cr(III) conversion coatings are composed of Cr2O3, Cr(OH)3, Al2O3, Al(OH)3, ZrO2, Zr(OH)4, AlF3, and ZrF4, but no hexavalent chromium component in the coatings. The result indicates that the coatings prepared in the solution with 0.01 M Cr(III) for 5 min have the smoothest and densest structure and the best anticorrosive performance among all of conversion coatings in this work.  相似文献   

17.
The influence of deposition temperature and concentration of NaNO2 in the phosphating bath on the surface morphology and coverage of iron-phosphate coatings on low carbon steel was investigated. The phosphate coatings were chemically deposited on steel from phosphate bath at different temperatures (30-70 °C) and with the addition of different amounts of accelerator, NaNO2 (0.1, 0.5 and 1.0 g dm−3). The morphology of phosphate coatings was investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The composition of iron-phosphate coatings was determined using energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Surface coverage was evaluated by the voltammetric anodic dissolution (VAD) technique.It was shown that the increase in temperature of the NaNO2-free phosphating bath up to 70 °C caused an increase in surface coverage. The addition of NaNO2 in the phosphating bath significantly increased the surface coverage of phosphate coatings deposited at temperatures lower than 50 °C. The phosphate crystals were of laminated and needle-like structures for deposits obtained at temperatures lower than 50 °C, while at higher temperatures needle-like structure was transformed to laminated structure. The increase in NaNO2 concentration in the phosphating bath from 0.1 to 1.0 g dm−3 did not significantly increase the surface coverage, but decreased the crystals size, consequently favouring the phosphate nucleation and better packing of the crystals.  相似文献   

18.
In this Letter, the entanglement dynamics of two interacting qubits in a common bath and in two independent baths, at finite and zero temperature are investigated. Entanglement sudden death (ESD) and entanglement sudden birth (ESB) are observed when the two qubits are embedded in two independent baths at finite temperature. At zero temperature, the entanglement of the two qubits may evolve to a steady state with non-zero value when the two qubits are embedded in a common bath, the entanglement sudden birth does not occur when the qubits are embedded in two independent baths.  相似文献   

19.
研究2-(5-溴-2吡啶偶氮)-5-二乙氨基苯酚(5-Br-PADAP)分光光度法测定手掌面镀锌工具遗留印迹的锌含量。考察了缓冲液用量、pH、显色剂用量等反应条件对测定的影响;在优化好的条件下,建立了标准曲线并测定了不同接触时间、时间间隔条件下手掌面镀锌工具遗留印迹的锌含量。研究结果表明,pH 8.0的硼砂-硼酸缓冲液4 mL,1 g·L-1的5-Br-PADAP溶液0.2 mL以及10%曲拉通-X-100溶液1 mL为最佳测定条件,在此条件下,Zn2+在0~14 μg范围内呈良好的线性关系,回归方程为y=1.851 34x+0.002 29;在接触时间10 s~5 min内,手掌面镀锌工具遗留印迹锌含量呈上升趋势,在5~10 min内趋于平缓,在接触时间5 min时已基本达到饱和状态,锌含量在0.425~2.377 μg·cm-2;手掌面镀锌工具遗留印迹锌含量在间隔时间0~2 h急剧下降,在2~7 h内下降的幅度逐渐变小,当间隔时间达到7 h时,锌含量仅为0.188 μg·cm-2,与间隔0 h锌含量相比减少了约90%。因此,微量金属显现实验一定要尽早进行。此外,不同间隔时间条件下手掌面锌含量的变化规律与喷洒显现实验中遗留印迹强度变化并非完全对应,这说明手掌面上的锌含量并非唯一可以影响不同间隔时间条件下遗留印迹强度的因素。首次在实验中证实了Zn2+与蛋白质结合后可以被络合能力更强的5-Br-PADAP分子夺取出来而显色的假设。运用此种宏观微观相结合的方法进行研究,有利于对微量金属显现实验中各影响因素机理的探讨,为进一步的研究奠定了基础。  相似文献   

20.
We consider systems of moving particles in 1-dimensional space interacting through energy storage sites. The ends of the systems are coupled to heat baths, and resulting steady states are studied. When the two heat baths are equal, an explicit formula for the (unique) equilibrium distribution is given. The bulk of the paper concerns nonequilibrium steady states, i.e., when the chain is coupled to two unequal heat baths. Rigorous results including ergodicity are proved. Numerical studies are carried out for two types of bath distributions. For chains driven by exponential baths, our main finding is that the system does not approach local thermodynamic equilibrium as system size tends to infinity. For bath distributions that are sharply peaked Gaussians, in spite of the near-integrable dynamics, transport properties are found to be more normal than expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号