首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc Selenide (ZnSe) thin films were deposited onto well cleaned glass substrates using vacuum evaporation technique under a vacuum of 3×10−5 mbar. The prepared ZnSe samples were implanted with mass analyzed 75 keV B+ ions at different doses ranging from 1012 to 1016 ions cm−2. The composition, thickness, microstructures, surface roughness and optical band gap of the as-deposited and boron-implanted films were studied by Rutherford backscattering (RBS), grazing incidence X-ray diffraction, Atomic force microscopy, Raman scattering and transmittance measurements. The RBS analysis indicates that the composition of the as-deposited and boron-implanted films is nearly stoichiometric. The thickness of the as-deposited film is calculated as 230 nm. The structure of the as-deposited and boron-implanted thin films is cubic. It is found that the surface roughness increases on increasing the dose of boron ions. In the optical studies, the optical band gap value decreases with an increase of boron concentration. In the electrical studies, the prepared device gave a very good response in the blue wavelength region.  相似文献   

2.
杨杭生  聂安民  邱发敏 《中国物理 B》2010,19(1):17202-017202
Cubic boron nitride thin films were deposited on silicon substrates by low-pressure inductively coupled plasma-enhanced chemical vapour deposition. It was found that the introduction of O2 into the deposition system suppresses both nucleation and growth of cubic boron nitride. At a B2H6 concentration of 2.5\% during film deposition, the critical O2 concentration allowed for the nucleation of cubic boron nitride was found to be less than 1.4\%, while that for the growth of cubic boron nitride was higher than 2.1\%. Moreover, the infrared absorption peak observed at around 1230--1280~cm-1, frequently detected for cubic boron nitride films prepared using non-ultrahigh vacuum systems, appears to be due to the absorption of boron oxide, a contaminant formed as a result of the oxygen impurity. Therefore, the existence of trace oxygen contamination in boron nitride films can be evaluated qualitatively by this infrared absorption peak.  相似文献   

3.
Boron carbon nitride films were deposited by radio frequency magnetron sputtering using a composite target consisting of h-BN and graphite in an Ar-N2 gas mixture. The samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The results suggest that the films are atomic-level hybrids composed of B, C and N atoms. The boron carbon nitride films prepared in the present experiment have a disordered structure. The sputtering power varied from 80 W to 130 W. This sputtering power was shown to have regular effect on the composition of boron carbon nitride films. The samples deposited at 80 W and 130 W are close to the stoichiometry of BC3N. The sample deposited at 110 W is close to the stoichiometry of BCN. The samples deposited at 100 W and 120 W approach to BC2N. It is very significant for us to synthesize boron carbon nitride compound with controllable composition by changing the sputtering power.  相似文献   

4.
Thin films of molybdenum oxide were deposited in vacuum by pulsed laser ablation using a xenon fluoride (351 nm) and a krypton fluoride (248 nm) excimer lasers. The films were deposited on unheated substrates and were post-annealed in air in the temperature range 300–500°C. The structural, morphological, chemical, and optical properties of the films were studied. As-deposited films were found to be dark. The transparency of the films was improved with annealing in air. The films were polycrystalline with diffraction peaks that belong to the orthorhombic phase of MoO3. The surface morphology of the films showed a layered structure. Both the grain size and surface roughness increased with annealing temperature. The stoichiometry of the films improved upon annealing in air, with the best stoichiometry of MoO2.95 obtained for films deposited by the XeF laser and annealed at 400°C. Similarly, the best transparency, with a transmittance exceeding 80%, was obtained with the films annealed in the temperature range 400–450°C.  相似文献   

5.
Highly transparent and conductive Boron doped zinc oxide (ZnO:B) thin films were deposited using chemical spray pyrolysis (CSP) technique on glass substrate. The effect of variation of boron doping concentration in reducing solution on film properties was investigated. Low angle X-ray analysis showed that the films were polycrystalline fitting well with a hexagonal wurtzite structure and have preferred orientation in [002] direction. The films with resistivity 2.54×10−3 Ω-cm and optical transmittance >90% were obtained at optimized boron doping concentration. The optical band gap of ZnO:B films was found ∼3.27 eV from the optical transmittance spectra for the as-deposited films. Due to their excellent optical and electrical properties, ZnO:B films are promising contender for their potential use as transparent window layer and electrodes in solar cells.  相似文献   

6.
Cubic boron nitride (cBN) films were deposited by rf bias-assisted dc plasma-jet chemical vapor deposition. Effects of H2 flow rate and bias voltage on the growth of the cBN films were investigated. High phase purity cBN (over 90%) can be obtained in a wide range of H2 flow rates of 5–10 sccm and bias voltages from -50 to -100 V. Nearly phase pure cBN films were deposited at a H2 flow rate of 10 sccm and bias voltages of -60 V and -70 V. The deposited films were characterized by Raman spectroscopy, Fourier-transform infrared spectroscopy, and glancing angle X-ray diffraction. Raman peaks were observed for all the cBN films, which indicate a good crystallinity of the films. PACS 61.10.Eq; 78.30.-j; 81.15.Gh  相似文献   

7.
The electrical and structural characteristics of hafnium oxide thin films reactively deposited from a filtered cathodic vacuum arc have been investigated. X-ray photoelectron spectroscopy was used to determine the deposition conditions (Ar/O2 ratio) which produced stoichiometric HfO2 films. Cross-sectional transmission electron microscopy showed that the micro-structure of the films was highly disordered with electron-diffraction analysis providing evidence for the presence of sub-nano-metre crystallites of the monoclinic HfO2 (P21/c) phase. Further evidence for the presence of this phase was provided by measuring the O k-edge using electron energy loss spectroscopy and comparing it with calculations performed using FEFF8.2, a multiple scattering code. Surface imaging revealed that local film damage occurred in films deposited with substrate bias voltages exceeding −200 V. The current-leakage characteristics of the HfO2 films deposited with a bias of approximately −100 V suggest that device grade HfO2 films can be produced from a filtered cathodic vacuum arc.  相似文献   

8.
Structure and mechanical properties of reactive sputtering CrSiN films   总被引:1,自引:0,他引:1  
CrSiN films with various Si contents were deposited by reactive magnetron sputtering using the co-deposition of Cr and Si targets in the presence of the reactive gas mixture. Comparative studies on microstructure and mechanical properties between CrN and CrSiN films with various Si contents were carried out. The structure of the CrSiN films was found to change from crystalline to amorphous structure as the Si contents increase. Amorphous phase of Si3N4 compound was suggested to exist in the CrSiN film. The growth of films has been observed from continuous columnar structure, granular structure to glassy-like appearance morphology with the increase of silicon content. The film fracture changed from continuous columnar structure, granular structure to glassy-like appearance morphology with the increase of silicon content. Two hardness peaks of the films as function of Si contents have been discussed.  相似文献   

9.
CdS thin films are deposited onto glass substrates by vacuum evaporation at 373 K and the films are annealed at different temperatures. Rutherford backscattering spectrometry (RBS) and X-ray diffraction techniques are used to determine the thickness, composition, crystalline structure and grain size of the films. The films show a predominant hexagonal phase with small crystallites. The optical band gap of the films are estimated using the optical transmittance measurements. A decrease in the band gap is observed for the annealed films. The Raman peak position of the CdS A1 (LO) mode did not change much whereas, the full width at half maximum (FWHM) is found to decrease with annealing.  相似文献   

10.
A novel approach was investigated to obtain the superhydrophobicity on surfaces of boron nitride films. In this method boron nitride films were deposited firstly on Si(1 0 0) and quartz substrate using a radio frequency (RF) magnetron sputtering system, and then using CF4 plasma treatment, the topmost surface area can be modified systematically. The results have shown that the water contact angle on such surfaces can be tuned from 67° to 159°. The films were observed to be uniform. The surfaces of films consist of micro-features, which were confirmed by Atomic Force Micrograph. The chemical bond states of the films were determined by Fourier Transform Infrared (FTIR) Spectroscopy, which indicate the dominance of B-N binding. According to the X-ray Photoelectron Spectroscopy analysis, the surface of film is mainly in BN phase. The micro-feature induced surface roughness is responsible for the observed superhydrophobic nature. The water contact angles measured on these surfaces can be modeled by the Cassie's formulation.  相似文献   

11.
Obliquely deposited thin films of ternary Ag-Ge-S glasses are characterized in this work. Thin films are fabricated in a vacuum thermal evaporator at different evaporation angles and examined by Raman spectroscopy. The Raman mode frequency of GeS4 corner-sharing (CS) structure of the as-deposited films display a red-shift as a function of Ag content due to reduced global connectivity, and therefore decreased network stress. Film thickness of normally deposited thin films is significantly less when compared against obliquely deposited ones. Sulfur-ring (S8) modes are observed in thin films but not in corresponding bulk material. Thermal annealing of thin films results in the disappearance of Sulfur-ring (S8) modes, while the temperature required for this phenomenon is deposition angle dependent. Thickness of the obliquely deposited films shrinks significantly after thermal annealing, which indicates a collapse of the micro-column structure introduced by oblique deposition.  相似文献   

12.
Structural and optical properties of pure Mg thin film coated with Pd have been investigated. Pd-capped Mg thin films had been prepared by DC magnetron sputtering. This work presents an ex situ study on hydrogenation and dehydrogenation kinetics of Pd/Mg films at different conditions using XRD, AFM and optical spectrophotometer. We have succeeded to load thin films of Mg to MgH2 at normal temperature and normal pressure of hydrogen gas. In hydrogenation, α-MgH2 phase of magnesium hydride was observed in hydrogenated films at 200 °C and γ-MgH2 at 250 °C respectively. The desorption kinetics in vacuum also revealed the phase transformation α-MgH2 to γ-MgH2. A reflectance change was observed in hydrogenated films in comparison of as deposited thin film. Hydrogenated (H loaded) samples were observed partially transparent in comparison of as deposited.  相似文献   

13.
The lead salts and their alloys are extremely interesting semiconductors due to their technological importance. The fabrication of devices with alloys of these compounds possessing detecting and lasing capabilities has been an important recent technological development. The high quality polycrystalline thin films of PbSe1−xTex with variable composition (0≤x≤1) have been deposited onto ultra clean glass substrates by vacuum evaporation technique. As deposited films were annealed in vacuum at 350 K. The optical, electrical and structural properties of PbSe1−xTex thin films have been examined. The optical constants (absorption coefficient and bandgap) of the films were determined by absorbance measurements in the wavelength range 2500-5000 nm using Fourier transform infrared spectrophotometer. The dc conductivity and activation energy of the films were measured in the temperature range 300-380 K. The X-ray diffraction patterns were used to determine the sample quality, crystal structure and lattice parameter of the films.  相似文献   

14.
The zirconium oxide (ZrO2) thin films are deposited on Si (100) and quartz substrates at various substrate temperatures (room temperature–973 K) at an optimized oxygen partial pressure of 3×10?2 mbar using pulsed laser deposition technique. The effect of substrate temperature on microstructural, optical and mechanical properties of the films is investigated. The X-ray diffraction studies show that the films deposited at temperatures ≤773 K are monoclinic, while the films deposited at temperatures ≥873 K show both monoclinic and tetragonal phases. Tetragonal phase content increases with the increase of substrate temperatures. The surface morphology and roughness are investigated using atomic force microscope in contact mode. The optical properties of the films show that the refractive indices (at 550 nm) are found to increase from 1.84 to 2.35 as the temperature raises from room temperature (RT) to 973 K. Nanoindentation measurements show that the hardness of the films is 11.8 and 13.7 GPa for the films deposited at 300 and 973 K, respectively.  相似文献   

15.
Ti-Al-N films with different chemical compositions were deposited on stainless steel by changing the relative substrate position to targets using double-targeted reactive magnetron sputtering technique in the same process. The tribological behavior of the Ti-Al-N films was investigated in the temperature ranging from room temperature to elevated temperature in air without any lubricant on UMT-3 multifunctional friction and wear tribometer. The structure of the as-deposited films and the worn surface after tribometer testing were identified using XRD, EDS and SEM. It was found that the chemical composition of the as-deposited films altered with substrate position from Ti0.82Al0.18N to Ti0.12Al0.88N. XRD results revealed that the sputtered films before heat treatment were amorphous, but different phases such as TiN, AlN and TiAlN were formed after heat treatment of 700 °C × 1 h. Friction and wear tests indicated the films with x = 0.57, 0.65 exhibited the best tribological performance during the Ti1−xAlxN films system because of its hard phase and the formation of transfer films.  相似文献   

16.
Zinc selenide (ZnSe) thin films (d = 0.11-0.93 μm) were deposited onto glass substrates by the quasi-closed volume technique under vacuum. Their structural characteristics were studied by X-ray diffraction (XRD) and atomic force microscopy (AFM). The experiments showed that the films are polycrystalline and have a zinc blende (cubic) structure. The film crystallites are preferentially oriented with the (1 1 1) planes parallel to the substrate surface. AFM images showed that the films have a grain like surface morphology. The average roughness, Ra = 3.3-6.4 nm, and the root mean square roughness, Rrms = 5.4-11.9 nm, were calculated and found to depend on the film thickness and post-deposition heat treatment.The spectral dependence of the absorption coefficient was determined from transmission spectra, in the range 300-1400 nm.The values of optical bandgap were calculated from the absorption spectra, Eg = 2.6-2.7 eV.The effect of the deposition conditions and post-deposition heat treatment on the structural and optical characteristics was investigated.  相似文献   

17.
Evaporated thin films of zinc sulfide (ZnS) have been deposited in a low ambient atmosphere of hydrogen sulfide (H2S ∼10−4 Torr). The H2S atmosphere was obtained by a controlled thermal decomposition of thiourea [CS(NH2)2] inside the vacuum chamber. It has been observed that at elevated substrates temperature of about 200 °C helps eject any sulfur atoms deposited due to thermal decomposition of ZnS during evaporation. The zinc ions promptly recombine with H2S to give better stoichiometry of the deposited films. Optical spectroscopy, X-ray diffraction patterns and scanning electron micrographs depict the better crystallites and uniformity of films deposited by this technique. These deposited films were found to be more adherent to the substrates and are pinhole free, which is a very vital factor in device fabrication.  相似文献   

18.
Studying the surface properties of cubic boron nitride (c-BN) thin films is very important to making it clear that its formation mechanism and application. In this paper, c-BN thin films were deposited on Si substrates by radio frequency sputter. The influence of working gas pressure on the formation of cBN thin film was studied. The surface of c-BN films was analyzed by X-ray photoelectron spectroscopy (XPS), and the results showed that the surface of c-BN thin films contained C and O elements besides B and N. Value of N/B of c-BN thin films that contained cubic phase of boron nitride was very close to 1. The calculation based on XPS showed that the thickness of hexagonal boron nitride (h-BN) on the surface of c-BN films is approximately 0.8 nm.  相似文献   

19.
Barium titanate(BTO) thin films were deposited on polycrystalline Ni foils by using the polymer assisted deposition(PAD) technique.The growth conditions including ambient and annealing temperatures were carefully optimized based on thermal dynamic analysis to control the oxidation processing and interdiffusion.Crystal structures,surface morphologies,and dielectric performance were examined and compared for BTO thin films annealed under different temperatures.Correlations between the fabrication conditions,microstructures,and dielectric properties were discussed.BTO thin films fabricated under the optimized conditions show good crystalline structure and promising dielectric properties with εr~ 400 and tan δ < 0.025 at 100 kHz.The data demonstrate that BTO films grown on polycrystalline Ni substrates by PAD are promising in device applications.  相似文献   

20.
Iron fluoride thin films were successfully grown by Pulsed Laser Deposition (PLD), and their physico-chemical properties and electrochemical behaviours were examined by adjusting the deposition conditions, such as the target nature (FeF2 or FeF3), the substrate temperature (Ts ≤ 600 °C), the gas pressure (under vacuum or in oxygen atmosphere) and the repetition rates (2 and 10 Hz). Irrespective of the FeF2 or FeF3 target nature, iron fluoride thin films, deposited at 600 °C under vacuum, showed X-ray diffraction (XRD) patterns corresponding to the FeF2 phase. On the other hand, iron fluoride thin films deposited at room temperature (RT) from FeF2 target were amorphous, whereas the thin films deposited from FeF3 target consisted of a two-phase mixture of FeF3 and FeF2 showing sharp and broad diffraction peaks by XRD, respectively. Their electrochemical behaviour in rechargeable lithium cells was investigated in the 0.05-3.60 V voltage window. Despite a large irreversible capacity on the first discharge, good cycling life was observed up to 30 cycles. Finally, their electrochemical properties were compared to the ones of iron oxide thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号