首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
CdS doped TiO2 thin films (with CdS content=0, 3, 6, 9 and 12 at%) were grown on glass substrates. The X-ray diffraction analysis revealed that the films are polycrystalline of monoclinic TiO2 structure. The microstructure parameters of the films such as crystallite size (Dν) and microstrain (e) are calculated. Both the crystallites size and the microstrain are decreased with increasing CdS content. The optical constants have been determined in terms of Murmann's exact equations. The refractive index and extinction coefficient are increased with increasing CdS content. The optical band gap is calculated in the strong absorption region. The possible optical transition in these films is found to be an allowed direct transition. The values of Egopt are found to decrease as the CdS content increased. The films with 3 at% CdS content have better decomposition efficiency than undoped TiO2. The films with 6 at% and 9 at% CdS content have decomposition efficiency comparable to that of undoped TiO2, although they have lower band gap. The CdS doped TiO2 could have a better impact on the decomposing of organic wastes.  相似文献   

2.
Undoped and cobalt doped titania (TiO2) thin films have been prepared on Si(1 0 0) monocrystal and quartz substrate using the sol-gel deposition method and annealed in air at 450, 550, 650, 750, 850, 950 and 1050 °C. Several experimental techniques (AFM, XRD, Raman spectroscopy, XRR, EDX, XPS, XAS, UV-VIS spectroscopy) have been used to characterize these films. Further more the degree of light induced hydrophilicity was estimated by measuring the contact angle of a water droplet on the film. Increase of the annealing temperature and in smaller degree also cobalt doping predispose titania crystallite growth. The rutile phase was detected at lower temperatures in the cobalt doped films than in the undoped titania films. Cobalt in the cobalt doped TiO2 was seen to be in Co2+ oxidation state, mainly in CoTiO3 phase when films were annealed at temperatures higher than 650 °C. Cobalt compounds segregated into the sub-surface region and to the surface of the titania, where they formed islands. Cobalt doping red-shifted the fundamental absorption edge further into the visible range, however it did not enhance the light induced hydrophilicity of the thin film surface as compared to the undoped titania thin films.  相似文献   

3.
TiO2 nanoparticles doped with two different concentrations of Cobalt, 0.02 and 0.04 mol, are prepared by sol–gel method. The crystalline phase of the doped and undoped nanoparticles and particle sizes are observed with X-ray diffraction and transmission electron microscope. FTIR confirms the bonding interaction of Co2+ in TiO2 lattice framework. The UV absorption spectra of the doped material shows two absorption peaks in the visible region related to d–d electronic transitions of Co2+ in TiO2 lattice. Compared to undoped TiO2 nanoparticles, the cobalt doped samples show a red shift in the band gap. Steady state photoluminescence spectra give emission peaks related to oxygen defects. The decrease in the intensity ratio of UV/visible emission peaks confirms distortion of structural regularity and formation of defects after doping. The intensity ratio of different visible emission peaks is nearly same for undoped and 0.02 Co2+. However, this ratio decreases profoundly at 0.04 Co2+, due to concentration quenching effect. Photoluminescence excitation spectra, recorded at 598 nm emission wavelength, give different excitation peaks associated with oxygen vacancies and Co2+. Time resolved photoluminescence spectra give longer decay time for doped samples, indicating longer relaxation of conduction band electrons on the defect and on dopant sites.  相似文献   

4.
Photoluminescence (PL) characteristics have been studied on undoped and Si-doped CuGaSe2 single crystal thin films grown on GaAs (001) substrate by migration-enhanced epitaxy. Room temperature PL spectrum of an undoped layer clearly shows free excitonic emission bands related to the minimum band-edge and to the split-off valence band, but no discernible emission has been observed in the low energy area. At 4.2 K, the excitonic emission due to the split-off valence band disappears. Instead, two additional emissions appear at 1.68 and 1.715 eV which are attributed to the bound exciton and band-to-acceptor transition. The Si doping to CuGaSe2 produces two additional PL bands around 1.61 and 1.64 eV. These PL bands are attributed to the donor acceptor pair emissions due to the doped Si impurity which probably occupies Cu or Ga sites and intrinsic Cu vacancy.  相似文献   

5.
Pure TiO2 and nitrogen doped titanium dioxide (N-TiO2) thin films were prepared by sol-gel method through spin coating on soda lime glass substrates. TiCl4 and urea were used as Ti and N sources in the sol. XRD results showed nitrogen doping has retarded anatase to rutile phase transformation. The doping also leads to a decrease in roughness of the samples from 4 nm (TiO2) to 1 nm (N-TiO2). However, surface analysis by statistical methods reveals that both surfaces have self-affine structure. Optical band gap of thin films was shifted from 3.65 eV (TiO2) to 3.47 eV (N-TiO2). Hydrophilic conversion and photocatalytic degradation properties of thin films were investigated and exhibited that N-TiO2 thin film has more preferable hydrophilicity and photocatalytic properties under UV illumination.  相似文献   

6.
The influence of the gadolinium doping on the structural features and opto-electrical properties of ZnO:Al (ZAO) films deposited by radio frequency (RF) magnetron sputtering method onto glass substrates was investigated. X-ray analysis showed that the films were polycrystalline fitting well with a hexagonal wurtzite structure and have preferred orientation in [0 0 2] direction. The Gd doped ZAO film with a thickness of 140 nm showed a high visible region transmittance of 90%. The optical band gap was found to be 3.38 eV for pure ZnO film and 3.58 eV for ZAO films while a drop in optical band gap of ZAO film was observed by Gd doping. The lowest resistivities of 8.4 × 10−3 and 10.6 × 10−3 Ω cm were observed for Gd doped and undoped ZAO films, respectively, which were deposited at room temperature and annealed at 150 °C.  相似文献   

7.
Si doped and undoped nanocrystalline aluminum nitride thin films were deposited on various substrates by direct current sputtering technique. X-ray diffraction analysis confirmed the formation of phase pure hexagonal aluminum nitride with a single peak corresponding to (1 0 0) reflection of AlN with lattice constants, a = 0.3114 nm and c = 0.4986 nm. Energy dispersive analysis of X-rays confirmed the presence of Si in the doped AlN films. Atomic force microscopic studies showed that the average particle size of the film prepared at substrate temperature 200 °C was 9.5 nm, but when 5 at.% Si was incorporated the average particle size increased to ∼21 nm. Field emission study indicated that, with increasing Si doping concentration, the emission characteristics have been improved. The turn-on field (Eto) was 15.0 (±0.7) V/μm, 8.0 (±0.4) V/μm and 7.8 (±0.5) V/μm for undoped, 3 at.% and 5 at.% Si doped AlN films respectively and the maximum current density of 0.27 μA/cm2 has been observed for 5 at.% Si doped nanocrystalline AlN film. It was also found that the dielectric properties were highly dependent on Si doping.  相似文献   

8.
Li doped (Ba,Sr)TiO3 thick films were fabricated by employing the screen printing method on the alumina (Al2O3) substrates. Interdigital capacitor patterns with seven fingers of 200 μm gap, 250 μm length were designed and screen printed on the alumina substrates. Ba0.5Sr0.5TiO3 materials, paraelectric state at the room temperature, have been chosen for the microwave devices due to high dielectric permittivity and low loss tangent, however, the sintering temperature of (Ba,Sr)TiO3 is over 1350 °C. In order to lower the sintering temperature, Li (3 wt%) was added to the (Ba,Sr)TiO3 materials. Li doped (Ba,Sr)TiO3 thick films screen printed on the alumina (Al2O3) substrates were sintered at 900 °C for 1.5 h. The structural feature was analyzed with X-ray diffraction method. Temperature dependent dielectric properties were characterized from 303 to 403 K at 1 MHz. Within the ±100 V of bias voltage, current-voltage characteristics of Li doped (Ba,Sr)TiO3 films were investigated from 303 to 403 K. Through the current-voltage characteristics, the resistivity of Li doped (Ba,Sr)TiO3 films were calculated.In this paper, the significant negative temperature coefficient of resistance (NTCR) of Li doped (Ba,Sr)TiO3 films will be presented through the activation energy fitting. Measured activation energy is approximately 0.366 eV.  相似文献   

9.
ZnO-Al2O3 nanocomposite thin films were prepared by sol-gel technique. The room temperature synthesis was mainly based on the successful peptization of boehmite (AlO(OH)) and Al(OH)3 compounds, so as to use it as matrix to confine ZnO nanoparticles. The relative molar concentrations of xZnO to (1 − x) Al2O3 were varied as x = 0.1, 0.2 and 0.5. The optical absorption spectra of the thin films showed intense UV absorption peaks with long tails of variable absorption in the visible region of the spectra. The ZnO-Al2O3 nanocomposites thin films were doped with MgO by varying its molar concentrations as y = 0.05, 0.75, 0.1, 0.125, 0.15 and 0.2 with respect to the ZnO present in the composite. The MgO doped thin films showed suppression of the intense absorption peaks that was previously attained for undoped samples. The disappearance of the absorption peaks was analyzed in terms of the crystalline features and lattice defects in the nanocomposite system. The bulk absorption edge, which is reportedly found at 3.37 eV, was shifted to 5.44 eV (for y = 0.05), 5.63 eV (for y = 0.075) and maximum to 5.77 eV (for y = 0.1). In contrast, beyond the concentration, y = 0.1 the absorption edges were moved to 5.67 eV (for y = 0.125), 5.61 eV (for y = 0.15) and to 5.49 eV (for y = 0.2). This trend was explained in terms of the Burstein-Moss shift of the absorption edges.  相似文献   

10.
TiO2 doped WO3 thin films were deposited onto glass substrates and fluorine doped tin oxide (FTO) coated conducting glass substrates, maintained at 500 °C by pyrolytic decomposition of adequate precursor solution. Equimolar ammonium tungstate ((NH4)2WO4) and titanyl acetyl acetonate (TiAcAc) solutions were mixed together at pH 9 in volume proportions and used as a precursor solution for the deposition of TiO2 doped WO3 thin films. Doping concentrations were varied between 4 and 38%. The effect of TiO2 doping concentration on structural, electrical and optical properties of TiO2 doped WO3 thin films were studied. Values of room temperature electrical resistivity, thermoelectric power and band gap energy (Eg) were estimated. The films with 38% TiO2 doping in WO3 exhibited lowest resistivity, n-type electrical conductivity and improved electrochromic performance among all the samples. The values of thermoelectric power (TEP) were in the range of 23-56 μV/K and the direct band gap energy varied between 2.72 and 2.86 eV.  相似文献   

11.
In order to improve the photocatalytic activity, N-doped titanium oxide (TiO2) films were obtained by thermal oxidation of TiN films, which were prepared on Ti substrates by ion beam assisted deposition (IBAD). The dominating rutile TiO2 phase was found in films after thermal oxidation. According to the results of X-ray photoelectron spectroscopy (XPS), the residual N atoms occupied O-atom sites in TiO2 lattice to form TiON bonds. UV-vis spectra revealed the N-doped TiO2 film had a red shift of absorption edge. The maximum red shift was assigned to the sample annealed at 750 °C, with an onset wavelength at 600 nm. The onset wavelength corresponded to the photon energy of 2.05 eV, which was nearly 1.0 eV below the band gap of pure rutile TiO2. The effect of nitrogen was responsible for the enhancement of photoactivity of N-doped TiO2 films in the range of visible light.  相似文献   

12.
Co-doped TiO2 films were fabricated under different conditions using reactive facing-target magnetron sputtering. Co doping improves the transformation of TiO2 from anatase phase to rutile phase. The chemical valence of doped Co in the films is +2. All the films are ferromagnetic with a Curie temperature above 340 K. The average room-temperature moment per Co of the Co-doped TiO2 films fabricated at 1.86 Pa decreases from 0.74 μB at x=0.03 to 0.02 μB at x=0.312, and decreases from 0.54 to 0.04 μB as x increases from 0.026 to 0.169 for the Co-doped TiO2 films fabricated at 0.27 Pa. The ferromagnetism originates from the oxygen vacancies created by Co2+ dopants at Ti4+ cations. The optical band gaps value (Eg) of the Co-doped TiO2 films fabricated at 1.86 Pa decreases linearly from 3.35 to 2.62 eV with the increasing x from 0 to 0.312. For the Co-doped TiO2 films fabricated at 1.86 Pa, the Eg decreases linearly from 3.26 to 2.53 eV with increasing x from 0 to 0.350.  相似文献   

13.
Modifications in the structural and optical properties of 100 MeV Ni7+ ions irradiated cobalt doped ZnO thin films (Zn1−xCoxO, x = 0.05) prepared by sol-gel route were studied. The films irradiated with a fluence of 1 × 1013 ions/cm2 were single phase and show improved crystalline structure with preferred C-axis orientation as revealed from XRD analysis. Effects of irradiation on bond structure of thin films were studied by FTIR spectroscopy. The spectrum shows no change in bonding structure of Zn-O after irradiation. Improved quality of films is further supported by FTIR studies. Optical properties of the pristine and irradiated samples have been determined by using UV-vis spectroscopic technique. Optical absorption spectra show an appreciable red shift in the band gap of irradiated Zn1−xCoxO thin film due to sp-d interaction between Co2+ ions and ZnO band electrons. Transmission spectra show absorption band edges at 1.8 eV, 2.05 eV and 2.18 eV corresponding to d-d transition of Co2+ ions in tetrahedral field of ZnO. The AFM study shows a slight increase in grain size and surface roughness of the thin films after irradiation.  相似文献   

14.
Heavily doped Zn1−xMnxO (x = 0.3) films were prepared by polymeric precursor method onto glass substrates and their structural, morphological, optical and magnetic properties carefully studied. Undoped ZnO films were also prepared for the purpose of comparison. The polymeric precursor method consists in preparing a coating solution from the Pechini process followed by a three-step thermal treatment of the as deposited films at temperatures up to 550 °C for 30 min. X-ray diffraction (XRD) analysis reveals the typical hexagonal wurtzite structure of the undoped ZnO film. The addition of Mn ions leads to a dramatic reduction of the crystalline quality of film although no evidence of affectation by secondary phases is found. The affectation of the ZnO structure may be due to the formation of Mn clusters and generation of defects such as vacancies and interstitials. Here, the solubility limit of the Mn ions in ZnO should play an important role and it is discussed in the framework of ionic radius and valence states. The scanning electron microscopy (SEM) analysis shows that the surface of the doped sample was affected by the presence of cracks due, probably, to the expansion of the lattice constant of Zn0.7Mn0.3O caused by the Mn incorporation in the ZnO lattice. The existence of cluster-type structures on the surface is corroborated by atomic force microscopy (AFM). The EDX analysis, carried out on some areas in the film, yielded Mn/Zn ratios of about 0.3, which points out to an effective Mn incorporation in the film. On the other hand, the absorption edge of the doped films is red shifted to 2.9 eV (3.24 eV for undoped ZnO film) and the absorption edge is less sharp due, probably, to amorphous states appearing in the band gap. No evidence of dilute magnetic semiconductor mean-field ferromagnetic behavior is observed. The temperature dependence of the magnetization follows a Curie law suggesting pure paramagnetic behavior. The very small s-shape behavior of M versus H (without hysteresis) observed at room temperature on selected areas would stem from Mn clusters which are easily formed in transition metal doped ZnO.  相似文献   

15.
Characteristics of two green emission bands, G(I) and G(II), and their origin were investigated within 0.4-300 K under photoexcitation in the 3.4-6.0 eV energy range for undoped and Mo6+-, Mo6+ , Y3+-, Mo6+, Nb5+-, Mo6+, Ce3+-, Cr6+-, La3+-, Ba2+- and Cd2+-doped PbWO4 crystals with different concentrations of impurity and intrinsic defects, grown by different methods and annealed at different conditions. The G(I) emission band, observed at low temperatures, located around 2.3-2.4 eV and excited around 3.9 eV, is usually a superposition of many closely positioned bands. The G(I) emission of undoped crystals is assumed to arise from the WO42− groups located in the crystal regions of lead-deficient structure. In Mo6+-doped crystals, this emission arises mainly from the MoO42− groups themselves. The G(II) emission band located at 2.5 eV is observed only in the crystals, containing the isolated oxygen vacancies — WO3 groups. This emission appears at T>160 K under excitation around 4.07 eV as a result of the photo-thermally stimulated disintegration of localized exciton states and subsequent recombination of the produced electron and hole centres near WO3 groups. The G(II) emission accompanies also thermally stimulated recombination processes in PbWO4 crystals above 150 K. Mainly the G(II) emission is responsible for the slow decay of the green luminescence in PbWO4 crystals.  相似文献   

16.
Silver doped indium oxide (In2−x Agx O3−y) thin films have been prepared on glass and silicon substrates at room temperature (300 K) by reactive DC magnetron sputtering technique using an alloy target of pure indium and silver (80: 20 atomic %. The magnetron power (and hence the metal atom sputter flux) is varied in the range 40-80 W. The energy dispersive analysis of X-ray (EDAX) results show that the silver content in the film decreases with increasing magnetron power. The grain size of these films is of the order of 100 nm. The resistivity of these films is in the range 10−2-10−3 Ω cm. The work function of the silver-indium oxide films (by Kelvin Probe) are in the range: 4.64-4.55 eV. The refractive index of these films (at 632.8 nm) varies in the range: 1.141-1.195. The optical band gap of indium oxide (3.75 eV) shrinks with silver doping. Calculations of the partial ionic charge (by Sanderson's theory) show that silver doping in indium oxide thin films enhance the ionicity.  相似文献   

17.
Preparation of transparent and conducting indium doped CdO thin films by spray pyrolysis on glass substrate is reported for various concentration of indium (2-8 wt%) in the spray solution. The electrical, optical and structural properties of indium doped CdO films were investigated using different techniques such as Hall measurement, optical transmission, X-ray diffraction and scanning electron microscope. X-ray analysis shows that the undoped CdO films are preferentially orientated along (2 0 0) crystallographic direction. Increase of indium doping concentration increases the films packing density and reorient the crystallites along (1 1 1) plane. A minimum resistivity of 4.843×10−4 Ω cm and carrier concentration of 3.73×1020 cm−3 with high transmittance in the range 300-1100 nm were achieved for 6 wt% indium doping. The band gap value increases with doping concentration and reaches a maximum of 2.72 eV for 6 wt% indium doping from 2.36 eV of that of undoped film. The minimum resistivity achieved in the present study is found to be the lowest among the reported values for In-doped CdO films prepared by spray pyrolysis method.  相似文献   

18.
The optical absorption (OA) and photoluminescence (hereafter referred to as luminescence) studies were made on CaF2:Dy:Pb:Na single crystals (Dy—0.005 at%, Pb—0.188 at% and Na—0.007 at%) before and after γ-irradiation. The unirradiated crystal exhibited a strong OA band around 6.36 eV attributed to the ‘A’ band absorption of Pb2+ ions. The γ-irradiated crystal exhibited OA bands around 2.06, 3.28, 3.75 (broad shoulder) and 2.48 eV. The first three bands could be tentatively attributed to MNa centre when compared with that of the coloured CaF2:Na. The origin of 2.48 eV band was not explicitly known. Luminescence emission and excitation of Pb2+ and Dy3+ ions were negligible in the unirradiated crystal. Irradiated crystal exhibited a strong excitation spectrum with overlapping bands, due to different colour centres, in the UV-vis region for the 2.15 eV emission characteristic of Dy3+ ion. When excited, the absorbed energy (may be a part) was transferred from a colour centre to nearby Dy3+ ions and Dy3+ characteristic emission was observed. Exciting the irradiated crystal around 3.28 eV yielded emission at 2.56, 2.15 and 1.76 eV. The first two emission bands were due to Dy3+ ions. The excitation spectrum for the 1.76 eV emission showed two prominent bands around 2.02 and 3.08 eV and hence the emission was attributed to the MNa centre. The luminescence mechanism was described.  相似文献   

19.
Nb-doped anatase TiO2 single crystal has been grown by chemical vapour transport method. Raman spectra shows that the obtained crystal with Nb of 0.08 wt% has typical anatase structure. An absorption band was observed at around 2.2 eV, which seems to be due to the d-d transition in the conduction band. The electron paramagnetic resonance and electric resistivity measurements show that the doped niobium makes quite shallow donor level whose orbital is dxy-like centered at the titanium position of anatase.  相似文献   

20.
The paper describes the preparation and emission property of scandia and Re doped tungsten matrix impregnated cathode. By an easy and reproducible way, solid-liquid doping combined with two-step reduction, powders of tungsten particles covered with scandium oxide were obtained. Compared with scandia mixed tungsten powders prepared by mechanically mixing, scandia and rhenium doped tungsten powders had smaller particle size, for example, scandia (3 wt%) and Re (5 wt%) doped tungsten powders had the average size of about 50 nm in diameter. Based on this kind of powder, scandia and Re doped tungsten matrix with the sub-micrometer sized tungsten grains and a more uniform distribution of Sc2O3 were obtained in this paper. Scandia and Re doped tungsten matrix impregnated cathode had shown excellent emission property and good emission uniformity. The space charge limited current densities of more than 58A/cm2 at 900 °Cb could be obtained and the work function of this cathode was as low as 1.18 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号