首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-quality LaCuO2, elaborated by solid-state reaction in sealed tube, crystallizes in the delafossite structure. The thermal analysis under reducing atmosphere (H2/N2: 1/9) revealed a stoichiometric composition LaCuO2.00. The oxide is a direct band-gap semiconductor with a forbidden band of 2.77 eV. The magnetic susceptibility follows a Curie-Weiss law from which a Cu2+ concentration of 1% has been determined. The oxygen insertion in the layered crystal lattice induces p-type conductivity. The electrical conduction occurs predominantly by small polaron hopping between mixed valences Cu+/2+ with an activation energy of 0.28 eV and a hole mobility (μ300 K=3.5×10−7 cm2 V−1 s−1), thermally activated. Most holes are trapped in surface-polaron states upon gap excitation. The photoelectrochemical study, reported for the first time, confirms the p-type conduction. The flat band potential (Vfb=0.15 VSCE) and the hole density (NA=5.8×1017 cm−3) were determined, respectively, by extrapolating the curve C−2 versus the potential to their intersection with C−2=0 and from the slope of the linear part in the Mott-Schottky plot. The valence band is made up of Cu-3d orbital, positioned at 4.9 eV below vacuum. An energy band diagram has been established predicting the possibility of the oxide to be used as hydrogen photocathode.  相似文献   

2.
The compression behavior of nanoscale Zr-doped anatase was studied by means of a diamond anvil cell experiment with alternating cycles of compression and decompression in the stability field of anatase (up to 13 GPa). We found that multiple cycles of compression lead to stiffening of the material: Precompressed samples of nanoanatase Ti0.9Zr0.1O2 have a higher bulk modulus (K0=249(9) and 266(6) GPa) compared with the sample when compressed for the first time (K0=211(7) GPa). Upon compression, the crystallite size remains the same and the crystalline areas are free of defects. After the experiment, the crystallites are surrounded by amorphous rims, confirming the theoretical prediction by Pischedda et al. [Ultrastability and enhanced stiffness of similar to 6 nm TiO2 nanoanatase and eventual pressure-induced disorder on the nanometer scale, Phys. Rev. Let. 96 (2006) 035509] for nanoscale anatase, but yielding much lower pressures (12 GPa) for the onset of partial amorphization.  相似文献   

3.
Sodium acid phthalate (SAP), an efficient semi-organic crystal having dimensions 17×8×2 mm3 has been grown from aqueous solution by slow evaporation technique at room temperature within the period of 2 weeks. The lattice parameters of the grown crystals were determined using single-crystal X-ray diffraction analysis. The presence of functional groups was estimated qualitatively by Fourier transform infrared (FTIR) analysis. The band gap energy was determined using optical absorption studies. The TG/DTA analysis reveals that the SAP crystal is thermally stable up to 141.6 °C. The dielectric constant and dielectric loss was studied as a function of frequency and the corresponding activation energy (Ea) has been calculated for the grown crystal. Scanning electron microscope studies enunciate the ferroelectric domain patterns of the SAP crystal. Ferroelectric property of the grown crystal was confirmed by hysteresis loop studies.  相似文献   

4.
Well-aligned ZnO nanorod arrays have been successfully fabricated directly on anatase TiO2 nanoparticle films via low-temperature hydrothermal processes. The effects of the reactive time, temperature and reactant concentration on the growth of the as-prepared ZnO crystals are investigated in detail, and the possible mechanisms of crystal ZnO nanorod growth are also suggested. The results show that the low reactant concentration is in favor of the increase in the aspect ratio of crystal ZnO nanorods with weak orientation, while the long reactive time and high reactant concentration are useful to prepare well-aligned crystal ZnO nanorod arrays. Interestingly, the typically constructed composite films exhibit superhydrophilic characteristic without UV irradiation. Moreover, a strong near-ultraviolet PL band centering at about 385 nm and a weak green PL band centering at about 525 nm can appear at the room temperature.  相似文献   

5.
Phase transition from anatase to rutile for the 70 nm TiO2 crystallite has been investigated by the time differential perturbed angular correlation (TDPAC) technique. The study involved the annealing of the TiO2 nanocrystals, adsorbed with the nuclear probe (181Hf/181Ta) at trace level, at different temperatures for different durations. The TDPAC measurement was also supported by XRD measurement where the width of the peaks increases with the increase in annealing temperature indicating a crystal growth. The samples annealed up to 823 K for 4 h showed no phase transition, except for the growth of the crystallites. However, it showed phase transition at the same temperature (823 K), when annealed for longer duration, indicating the slower kinetics of the phase transition process. Further the sample, when annealed at 1123 K for 4 h, showed phase transition. It has also been observed that the 181Hf tracer, adsorbed on 70 nm anatase TiO2, diffuses from surface to bulk during the phase transition process and the extent of diffusion in anatase differs from that in rutile phase. However, surface to bulk mass-transfer is found to play a significant role in the phase transition process.  相似文献   

6.
The crystal structure, the 13C NMR spectroscopy and the complex impedance have been carried out on [Cd3(SCN)2Br6(C2H9N2)2]n. Crystal structure shows a 2D polymeric network built up of two crystallographically independent cadmium atoms with two different octahedral coordinations. This compound exhibits a phase transition at (T=355±2 K) which has been characterized by differential scanning calorimetry (DSC), X-rays powder diffraction, AC conductivity and dielectric measurements. Examination of 13C CP/MAS line shapes shows indirect spin–spin coupling (14N and 13C) with a dipolar coupling constant of 1339 Hz. The AC conductivity of this compound has been carried out in the temperature range 325–376 K and the frequency range from 10−2 Hz to 10 MHz. The impedance data were well fitted to two equivalent electrical circuits. The results of the modulus study reveal the presence of two distinct relaxation processes. One, at low frequency side, is thermally activated due to the ionic conduction of the crystal and the other, at higher frequency side, gradually disappears when temperature reaches 355 K which is attributed to the localized dipoles in the crystal. Moreover, the temperature dependence of DC-conductivity in both phases follows the Arrhenius law and the frequency dependence of σ(ω,T) follows Jonscher's universal law. The near values of activation energies obtained from the conductivity data and impedance confirm that the transport is through the ion hopping mechanism.  相似文献   

7.
An oxide semiconductor Ca2NiWO6, with double-perovskite crystal structure, was synthesized by solid-state reaction method. The compound Ca2NiWO6 was characterized by X-ray diffraction, UV-visible diffuse reflectance, and photoluminescence. The photocatalytic properties of the compound for water splitting were investigated under UV and visible light irradiation. The results showed H2 evolution was not observed over the compound under visible light irradiation (λ>420 nm) with a 300 W xenon arc lamp when using methanol (CH3OH) as electron donor, although the compound was responsive to visible light region. Based on the experimental results, a possible band structure was proposed through theoretical calculation of the electronic structure by using the full potential-linearized augmented plane wave (F-LAPW). The band structure and photocatalytic properties were attributed to the special crystal and electronic structures. Due to the oxygen vacancies in the compound, which worked as electron-hole recombination centers, the photocatalytic activity of the compound was low.  相似文献   

8.
The transport properties of Sr0.98La0.02SnO3−δ in the system Sr1−xLaxSnO3−δ, after which the pyrochlore La2Sn2O7 appears, were investigated over the temperature range 4.2-300 K. The oxide was found to be n-type semiconductor with concomitant reduction of Sn4+ into Sn2+. The magnetic susceptibility was measured down to 4.2 K and is less than 3×10−5 emu cgs mol−1 consistent with itinerant electron behavior. The electron is believed to travel in a narrow band of Sn:5s character with an effective mass ∼4 mo. The highest band gap is 4.32 eV and the optical transition is directly allowed. A further indirect transition occurs at 4.04 eV. The electrical conductivity follows an Arrhenius-type law with a thermal activation of 40 meV and occurs by small polaron hopping between nominal states Sn4+/2+. The linear increase of thermo-power with temperature yields an electron mobility μ300 K (2×10−4 cm2 V−1 s−1) thermally activated. The insulating-metal transition seems to be of Anderson type resulting from random positions of lanthanum sites and oxygen vacancies. At low temperatures, the conduction mechanism changes to a variable range hopping with a linear plot Ln ρ−1 vs. T−4. The photo electrochemical (PEC) measurements confirm the n-type conductivity and give an onset potential of −0.46 VSCE in KOH (1 M). The Mott-Schottky plot C−2-V shows a linear behavior from which the flat band potential Vfb=+0.01 VSCE at pH 7 and the doping density ND=1.04×1021 cm−3 were determined.  相似文献   

9.
Zinc indium selenide (ZnIn2Se4) thin films have been deposited onto amorphous and fluorine doped tin oxide (FTO)-coated glass substrates using a spray pyrolysis technique. Aqueous solution containing precursors of Zn, In, and Se has been used to obtain good quality deposits at different substrate temperatures. The preparative parameters such as substrate temperature and concentration of precursors solution have been optimized by photoelectrochemical technique and are found to be 325 °C and 0.025 M, respectively. The X-ray diffraction patterns show that the films are nanocrystalline with rhombohedral crystal structure having lattice parameter a=4.05 Å. The scanning electron microscopy (SEM) studies reveal the compact morphology with large number of single crystals on the surface. From optical absorption data the indirect band gap energy of ZnIn2Se4 thin film is found to be 1.41 eV.  相似文献   

10.
Nickelocene [bis(η5-cyclopentadienyl)nickel: Ni(C5H5)2, electron spin S=1, the ground state configuration 3A2g] is paramagnetic and belongs to a typical molecule-based magnet. Heat capacities of nickelocene have been measured at temperatures in the 3−320 K range by adiabatic calorimetry. By comparing with those of diamagnetic ferrocene crystal, a small heat capacity peak centered at around 15 K and a sluggish hump centered at around 135 K were successfully separated. The low-temperature peak at 15 K caused by the spin is well reproduced by the Schottky anomaly due to the uniaxial zero-field splitting of the spin S=1 with the uniaxial zero-field splitting parameter D/k=45 K (k: the Boltzmann constant). The magnetic entropy 9.7 J K−1 mol−1 is substantially the same as the contribution from the spin-manifold R ln 3=9.13 J K−1 mol−1 (R: the gas constant). The sluggish hump centered at around 135 K arises from rotational disordering of the cyclopentadienyl rings of nickelocene molecule. The enthalpy and entropy gains due to this anomaly are 890 J mol−1 and 6.9 J K−1 mol−1, respectively. As the hump spreads over a wide temperature region, separation of the hump from the observed heat capacity curve involves a little bit ambiguity. Therefore, these values should be regarded as being reasonable but tentative. The present entropy gain is comparable with 5.5 J K−1 mol−1 for the sharp phase transition at 163.9 K of ferrocene crystal. This fact implies that although the disordering of the rings likewise takes place in both nickelocene and ferrocene, it proceeds gradually in nickelocene and by way of a cooperative phase transition in ferrocene. A reason for this originates in loose molecular packing in nickelocene crystal. Molar heat capacity and the standard molar entropy of nickelocene are larger than those of ferrocene beyond the mass effect over the whole temperature region investigated. This fact provides with definite evidences for the loose molecular packing in nickelocene crystal.  相似文献   

11.
The thermoelectric power of C, Mn, C:Li, and Al:Li substituted MgB2 single crystals has been investigated in the temperature range 10-300 K. Both the in-plane (Sab) and the out-of-plane (Sc) thermopowers are positive for the non-substituted crystal and both Sab and Sc change a sign for crystals doped with electrons where C is substituted for B in the amount larger than 5 at%. When Li is substituted for Mg, the π band rather than the σ band is doped with holes and the doping effects are much more subtle. The anisotropy ratio of the non-substituted crystal Sab/Sc≈3 and this ratio is strongly reduced by the substitution of C. Isovalent magnetic Mn ions, which substitute for Mg with a drastic reduction of Tc, do not influence the values and temperature dependences of both Sab and Sc.  相似文献   

12.
Tungsten bronze (TB)-type oxide ceramic Pb0.74K0.13Y0.13Nb2O6 (PKYN) has been synthesized by the standard solid state reaction method. Single phase formation, orthorhombic crystal structure was confirmed by X-ray diffraction (XRD). The substitution of Y3+ in Pb0.74K0.52Nb2O6 (PKN) decreased the unit cell volume and TC=260 °C. PKYN exhibited the remnant polarization, Pr=8.5 μC/cm2, and coercive field, Ec=28.71 kV/cm. Electrical spectroscopy studies were carried out over the temperature (35-595 °C) and frequency (45 Hz-5 MHz) ranges, and the charge carrier phenomenon, grain-grain boundary contribution and non-Debye-type relaxation were analyzed. The relaxation species are immobile charges in low temperature and oxygen vacancies at higher temperature. The theoretical values computed using the relations, ε′=ε+sin(n(T)π/2)(a(T)/ε0)(ωn(T)−1); σ(ω)=σdc+Aωn are fitted with the experimental one. The n and A parameters suggested that the charge carrier's couple with the soft mode and become mobile at TC. The activation enthalpy, Hm=0.38 eV, has been estimated from the hopping frequency relation ωp=ωe exp(−Hm/kBT). The piezoelectric constants Kt=35.4%, d33=69×10−12 C/N, d31=−32×10−3 mV/N, S11E=17.8 pm2/N, etc., achieved in PKYN indicate the material is interesting for transducer applications. The activation energies from different formalisms confirmed the ionic-type conduction.  相似文献   

13.
We show that by Ca doping the Bi2Se3 topological insulator, the Fermi level can be fine tuned to fall inside the band gap and therefore suppresses the bulk conductivity. Non-metallic Bi2Se3 crystals are obtained. On the other hand, the Bi2Se3 topological insulator can also be induced to become a bulk superconductor, with Tc∼3.8 K, by copper intercalation in the van der Waals gaps between the Bi2Se3 layers. Likewise, an as-grown crystal of metallic Bi2Te3 can be turned into a non-metallic crystal by slight variation in the Te content. The Bi2Te3 topological insulator shows small amounts of superconductivity with Tc∼5.5 K when reacted with Pd to form materials of the type PdzBi2Te3.  相似文献   

14.
A systematic series of (Ge15Ga10Te75)1−x(CsI)x (x=0, 5, 10, 15 at%) far infrared transmitting chalcohalide glasses were prepared by the traditional melt-quenching method. The physical, thermal and optical properties were determined. The allowed direct transition and indirect transition of samples were calculated according to the Tauc equation. The results show that glass transition temperatures (Tg) were in the range 133-175 °C, with ΔT values between 81 and 130 °C. The highest values of metallization criterion (0.244) and energy gap (1.191 eV) were obtained for (Ge15Ga10Te75)85(CsI)15. When the dissolved amount of CsI increased from 0 to 15 at%, the direct optical band gap and indirect optical band gap were in the ranges 0.629-1.075 eV and 0.438-0.524 eV, respectively. The Ge-Ga-Te-CsI glasses have an effective transmission window between 1.7 and 25 μm, encompassing the region of interest for bio-sensing applications.  相似文献   

15.
A theoretical study on Ru-doped rutile SnO2(1 1 0) surface has been carried out by means of periodic density functional theory (DFT) at generalized gradient approximation (GGA-RPBE) level with a periodic supercell approach. Electronic structure analysis was performed based on the band structure and partial density of states. The results provide evidence that the electronic structures of SnO2(1 1 0) surface are modified by the surface Ru dopant, in which Ru 4d orbital are located at the edge of the band gap region. It is demonstrated that molecular oxygen adsorption characteristics on stoichiometric SnO2(1 1 0) surface are changed from endothermic to exothermic due to the existence of surface Ru dopant. The dissociative adsorption of molecular oxygen on the Ru5c/SnO2(1 1 0) surface is exothermic, which indicates that Ru could act as an active site to increase the oxygen atom species on SnO2(1 1 0) surface. Our present study reveals that the Ru dopant on surface is playing both electronic and chemical role in promoting the SnO2 gas-sensing property.  相似文献   

16.
In this research, dye-sensitized solar cells based on TiO2 micro-pillars fabricated by inductive couple plasma etcher were investigated by analyses of X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle, ultraviolet-visible absorption spectra (UV-vis), and current-voltage characteristics. X-ray diffraction patterns show that the TiO2 anatase phase forms while sintering at 450 °C for 30 min. The SEM images reveal that the diameter and height of TiO2 micro-pillars are about 3 and 0.8 μm, respectively. The measurements of contact angle between TiO2 micro-pillars and deionized water (DI water) reveal that the TiO2 micro-pillars is super-hydrophilic while annealed at 450 °C for 30 min.The absorption spectrum of TiO2 micro-pillars is better than TiO2 thin film and can be widely improved in visible region with N3 dye adsorbed. The results of current-voltage (I-V) characteristics analysis reveal that dye-sensitized solar cell with TiO2 micro-pillars electrode has better I-V characteristics and efficiency than TiO2 film electrodes. This result may be due to the annealed TiO2 micro-pillars applied on the electrode of dye-sensitized solar cell can increase the contact area between TiO2 and dye, resulting in the enhancement of I-V characteristics and efficiency for dye-sensitized solar cell.  相似文献   

17.
In this work we present the results obtained from the luminescence spectra and X-ray diffraction as well as transmission electron microscopy, at room temperature on crystals of NaCl1−xNaBrx:MnCl2:0.3% (x=0.00, 0.05, 0.25, and 0.50). The results suggest the existence of structures between the crystal planes (1 1 1) and (2 0 0), which may be associated with different types of Mn2+ arrangements, such as dipole complexes, octahedral and rhombohedral structures as well as other possible nanostructures that include mixtures of bromine/chlorine ions. These are responsible for the emission spectra of “as grown” crystals consisting of maxima around 500 nm and 600 nm. The green emission has been usually attributed to rhombohedral/tetrahedral symmetry sites; the present results point out that this is due to Mn–Cl/Br nanostructures with rhombohedral structure. On the other hand when the crystals are thermally quenched from 500 °C to room temperature the structures previously detected present changes. Only a red band appears around 620 nm if the samples are later annealed at 80 °C.  相似文献   

18.
An investigation on the structural stabilities, electronic and optical properties of LiBeP under high pressure was conducted using the all-electron density functional theory within the local density approximation. Our results show that the sequence of the pressure induced phase transition of LiBeP is the Cu2Sb-type structure (P4/nmm), the MgSrSi-type structure (Pnma) and the LiGaGe-type structure (P63mc). The first transition (P4/nmm to Pnma) takes place at 2.95 GPa and the second (Pnma to P63mc) at 6.65 GPa. In the three phases, the bandgap is indirect and the valence band maximum is at the zone center. With increasing pressure LiBeP in the LiGaGe structure becomes a direct gap semiconductor at 19.75 GPa. The assignments of the structures in the optical spectra and the band structure transitions are discussed. The mean value of the optical dielectric constant for the Cu2Sb phase is smaller than that for the MgSrSi and the LiGaGe ones. This compound has a positive uniaxial anisotropy in the LiGaGe structure. The absorption coefficient along the z   direction, αzzαzz, for the MgSrSi structure is higher than that in the other two structures in the visible regime.  相似文献   

19.
Dielectric measurements for single crystal of betaine arsenate (CH3)3NCH2COO·H3AsO4 connected with the ferroelectric phase transition at 119 K were performed. The temperature dependence of electric permittivity was measured at dc electric fields up to 700 kV/m. The results show significant suppression of the dielectric constant by the application of dc field. Deviation from the classical behavior was observed. The electric permittivity was also measured in the paraelectric phase at constant temperature as a function of electric field intensity up to 700 kV/m. The electric permittivity might be well described by the classical relation with additional term including contribution to permittivity coming from clusters. The fit parameters indicate that the polar-clusters carries polarization P0=0.7- with the clusters size of L=12-20 nm.  相似文献   

20.
Magnetization, magnetic susceptibility, electrical resistivity, thermoelectric power and X-ray photoemission measurements were performed on a polycrystalline sample of CeCuIn. This compound crystallizes in a hexagonal structure of the ZrNiAl type. The magnetic data indicate that CeCuIn remains paramagnetic down to 1.9 K with a paramagnetic Curie temperature of −13 K and an effective magnetic moment equal to 2.5 μB. The electrical resistivity has metallic character, yet in the entire temperature range studied here, it is a strongly nonlinear function of temperature. The temperature dependence of the thermoelectric power is dominated by a small positive maximum near 76 K and a deep negative minimum at about 16 K. Above 150 K the thermopower exhibits a Mott's type behavior. The positive sign of the Seebeck coefficient in this temperature region indicates that the holes are dominant charge and heat carriers. The structure of Ce 3d5/2 and Ce 3d3/2 XPS spectra has been interpreted in terms of the Gunnarsson-Schönhammer theory. Three final-state contributions f0, f1 and f2 are clearly observed, which exhibit a spin-orbit splitting ΔSO≈18.7 eV. The appearance of the 3d9f0 component is a clear evidence of the intermediate valence behavior of Ce. From the intensity ratio I(f0)/[I(f0)+I(f1)+I(f2)] the 4f-occupation number is estimated to be 0.95. In turn, the ratio I(f2)/[I(f1)+I(f2)]=0.08 yields a measure of the hybridization energy that is equal to 45 meV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号