首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
We utilized gas phase hydrogen/deuterium (H/D) exchange reactions and ab initio calculations to investigate the complexation between a model peptide (Arg-Gly-AspRGD) with various alkali metal ions. The peptide conformation is drastically altered upon alkali metal ion complexation. The associated conformational changes depend on both the number and type of complexing alkali metal ions. Sodium has a smaller ionic diameter and prefers a multidentate interaction that involves all three amino acids of the peptide. Conversely, potassium and cesium form different types of complexes with the RGD. The [RGD + 2Cs − H]+ species exhibit the slowest H/D exchange reactivity (reaction rate constant of 6 × 10−13 cm3molecule−1s−1 for the fastest exchanging labile hydrogen with ND3). The reaction rate constant of the protonated RGD is two orders of magnitude faster than that of the [RGD + 2Cs − H]+. Addition of the first cesium to the RGD reduces the H/D exchange reaction rate constant (i.e., D0) by a factor of seven whereas sodium reduces this value by a factor of thirty. Conversely, addition of the second alkali metal ions has the opposite effect; the rate of D0 disappearance for all [RGD + 2Met − H]+ species (MetNa, K, and Cs) decreases with the alkali metal ion size.  相似文献   

2.
The 17O and 14N paramagnetic relaxation rates and chemical shifts of glycine as well as of water, in aqueous solutions of Co(II), Cu(II), and Mn(II) were measured as a function of pH, temperature and metal ion concentration; the relaxation results were fitted to a theoretical equation linking the Swift-Connick equation to the stability constants of all major complexes in equilibrium. As a result, the stability constants of all major complexes were determined, and from the temperature-dependent measurements the thermodynamic parameters for some of these complexes were also calculated. In addition to the bidentate complexes ML+, ML2 and ML3, monodentate complexes of the type MHL2+ and M(HL)22+, mixed complexes of the type MHL2+ and MHL3 were also considered. In the case of the Cu(II)-glycine system at pH> 12 two additional species were considered, namely ML2(OH) and ML2(OH)22−, suggested by the drastic reduction of the paramagnetic broadening in that pH range.  相似文献   

3.
Tripodal aza crown ether calix[4]arenes, 5a, 5b, 6a and 6b, have been synthesized. The structure of protonated 5a was elucidated by X-ray crystallography to be a self-threaded rotaxane. Complexation studies of 5a and 5b towards anions using Na+ as countercation were carried out by 1H NMR titration in dimethylsulfoxide-d6 and the mixture of chloroform-d and methanol-d4, respectively. Ligands 5a and 5b were able to form 1:1 complexes with Br, I and NO3 and the complexation stability varied as follows: NO3>I>Br. The effect of countercation on anion complexation was also investigated. The results showed that the association constants of 5a towards Br in the presence of various cations varied as K+>Bu4N+>Na+. The enhancement in anion complexation ability of 5a may result from the rearrangement of the tripodal ammonium unit in the presence of K+. The neutral forms, 6a and 6b, were able to form complexes with transition metal ions such as Co2+, Ni2+, Cu2+ and Zn2+. The stability of the complexes followed the sequence: Ni2+2+Cu2+Zn2+. Compounds 6a and 6b may, therefore, potentially be used as either transition metal ion or anion receptors that can be controlled by pH of the solution.  相似文献   

4.
Thin layers of gold (700 Å) were deposited on manufactured alumina pourous supports to yield nanopores with openings of <7 nm. A self-assembled monolayer (SAM) of alkyl thiols was then attached to provide a hydrophobic support for trialkyl phosphine oxide-based metal ion carriers. The resulting gated membranes provided a barrier to ions including H+, and Ca2+, NO3, and CH3COO. When an aqueous feed solution of 4.2 mM uranyl nitrate and 1 M lithium nitrate pH 4, and a receiving solution of 1 M sodium acetate pH 5.5 were used 100% of the metal was transported across the membrane by facilitated transport via the phosphate or phosphine oxide carrier. The thin gates transported metal ions as neutral nitrate complexes with fluxes high enough to be limited by the alumina support. The flux rates of 200,000 metal ions per pore per second are only a factor of 5 below that observed for the potassium channel. High selectivity of U over Eu is observed until the [U] is <0.84 mM in the feed solution, despite the fact the Eu actually transports faster when U is not present. This work demonstrates that selectivity can be added without impeding transport by using thin selective layers.  相似文献   

5.
A new PVC membrane electrode for Zn2+ ions based on tetra(2-aminophenyl) porphyrin (TAPP) as membrane carrier is prepared. The sensor exhibits a linear stable response over a wide concentration range (5.0×10−5 to 1.0×10−1 M) with a slope of 26.5 mV/decade and a limit of detection 3.0×10−5 M (1.96 ppm). It has a response time of about l0 s and can be used for at least 8 months without any divergence in potential. The propose membrane sensor revealed good selectivities for Zn2+ over a wide variety of other metal ions and can be used in pH range of 3.0–6.0. It was successfully applied to the direct determination of zinc in a pharmaceutical sample and also as an indicator electrode in potentiometric titration of Zn2+ ions.  相似文献   

6.
Solution studies to elucidate the coordination behaviour and the electrochemical response of the ferrocene-functionalized polyazamacrocycle 1,4,7,10,13,16-hexa(ferrocenylmethyl)-1,4,7,10,13,16-hexaazacyclooctadecane (L1) by potentiometric methods and electrochemical techniques have been carried out. Potentiometric methods in the presence of Cd2+, Hg2+, Pb2+ and Zn2+ were carried out in 1,4-dioxane/water (70:30 v/v, 25°C, 0.1 mol dm−3 KNO3). Electrochemical studies were carried out in acetonitrile/dichloromethane (50:50 v/v, 25°C, 0.1 mol dm−3 TBAClO4) in the presence of transition metal ions and anions.  相似文献   

7.
Thermogravimetric analyses of diclofenac sodium, its Ca2+ and Fe3+ complexes manifested a decreasing trend of the onset decomposition temperatures at which these compounds dissociated. The drop in the temperature was metal ion dependent; the sodium salt showed thermal stability up to 245 °C, whereas the complexes started their degradation processes at temperatures starting from 90 °C. While G* for the cleavage of the acetate moiety in the sodium salt was 63.76 kJmol−1, it was 82.06 and 140.57 kJmol−1 in the cases of Ca2+ and Fe3+, respectively. However, their complete fusion took place at 187.65, 150.34 and 98.77 °C, respectively, displaying a reversed trend which is probably indicative of some catalytic part on the binding metals.

Using the Gaussian 98 W package of programs, ab initio molecular orbital treatments were applied to diclofenac and its Ca2+ and Fe3+ metal complexes to study their electronic structure at the atomic level. The thermochemistry of diclofenac sodium was followed through the TG fragmentation peak temperatures using the density functional theory calculations at the 6-31G(d) basis set level. The FT-IR data were in good agreement with the theoretically calculated values.

Single point calculations at the B3LYP/ 6-311G(d) level of theory, were used to compare the geometric features, energies and dipole moments of these compounds to detect the effect of the binding metal ions on the thermal dissociation of their diclofenac complexes.  相似文献   


8.
The removal of Cd(II) using polystyrene foam chemically modified with 2,2′-bipyridine has been investigated. The modified polystyrene foam has been characterized by FT-IR spectroscopy, thermogravimetry, elemental analysis and scanning electron microscopy. The solid was employed as a Cd(II) adsorption from aqueous solutions at room temperature. The effects of several variables (pH, shaking speed, agitation time, metal concentration and presence of other ions in the medium) have been studied using batch technique. Flame atomic absorption spectrometry was used to determine the Cd(II) ion concentration in the filtrate after the adsorption process. Maximum sorption 90% was achieved at pH 7 after 30 min of shaking time. Sorbed metal ions have been desorbed with 5 ml of 2 M HNO3 with the detection limit of 16.7 ng ml−1. The Langmuir, Freundlich and D–R isotherm equation were used to describe partitioning behavior of the system at room temperature. Kinetic and thermodynamic behavior of modified polystyrene foam for Cd(II) ion removal was also studied. Br, PO43−, Pb2+, Ni2+ and Cr(VI) suppress the sorption to some extent. The possible sorption mechanism of Cd(II) ions onto modified sorbent is also discussed. Method was utilized to remove Cd(II) ions from aqueous media.  相似文献   

9.
Aminopolycar☐ylate ligands were added to the 4-(2-pyridylazo)-resorcinol (PAR) postcolumn reagent to alter the reagent selectivity towards transition metals. Addition of ethylenediaminetetraacetic acid (EDTA) completely suppressed the reaction between PAR and the metal ions. Addition of 0.1 mM nitrilotriacetic acid (NTA) to 1 mM PAR lowered the response to specific transition metal ions, but completely suppressed the PAR response to the lanthanides. Increasing the NTA concentration to 8 mM resulted in complete suppression of the PAR response to all metal ions except Cu2+ and Co2+ for which the detection limits were 3 and 1 ng, respectively. The observed selectivity results from the slow rate of conversion of metal ions from the M(NTA)24− form to M(PAR)2.  相似文献   

10.
A PVC membrane electrode for lead ions based on 5,5′-dithiobis-(2-nitrobenzoic acid) as membrane carrier was prepared. The electrode exhibits a Nernstian response for Pb2+ over a wide concentration range (1.0×10−2–4.0×10−6 M). It has a relatively fast response time and can be used for at least 3 months without any divergence in potentials. The proposed electrode revealed good selectivities for Pb2+ over a wide variety of other metal ions and could be used in a pH range of 2.0–7.0. It was used as an indicator electrode in potentiometric titration of lead ions and in direct determination of lead in water samples.  相似文献   

11.
Brianna R. White  James A. Holcombe   《Talanta》2007,71(5):2015-2020
A new fluorescent peptidyl chemosensor for Cu2+ ions with fluorescence resonance energy transfer (FRET) capabilities has been synthesized via Fmoc solid-phase peptide synthesis. The metal chelating unit, which is flanked by the fluorophores tryptophan (donor) and dansyl chloride (acceptor), consists of the amino acids glycine and aspartic acid (Gly-Gly-Asp-Gly-Gly-Asp-Gly-Gly-Asp-Gly-Gly-Asp-Gly-Gly). Coordination of the Cu2+ ions to the metal chelating unit results in fluorescent quenching of both the donor and acceptor fluorophores. Although it was determined that Cu2+ binding causes no change in FRET efficiency, emission and Cu2+-induced quenching of the acceptor dye can be used to monitor the concentration of the copper ions, with a detection limit of 32 μg L−1. The sensor also demonstrated sensitivity, reversibility and selectivity towards Cu2+ in a transition metal matrix at pH 7.0.  相似文献   

12.
Data for coated-wire, ion selective electrodes (ISEs) are presented for cationic surfactant ions found in common cleaners including benzyldimethyltetradecylammonium, benzyldimethyldodecylammonium, and benzyldimethylhexadecylammonium. The ion exchangers dinonylnaphthalene sulfonic acid, tetraphenyborate, and tetrakis(4-chlorophenyl)borate are examined, showing dinonylnaphthalene sulfonic acid to be the favored species. The ISEs exhibit approximately Nernstian behavior down to the 10−6 M limit of detection with lifetimes in excess of 50 days when used continuously, and a shelf life of over 100 days. Reaching the upper detection limit at the critical micelle concentration requires use of polymeric-membrane reference electrodes including a new membrane cocktail, which allow response measurements of an order of magnitude higher than the traditional fritted-glass reference electrode. The surfactant ISEs show excellent selectivity over the common metal ions Na+, K+, Mg2+, Ca2+, and Cu2+ with selectivity coefficients less than 10−5.3. The ISEs are also selective over the lower molecular weight quaternary ammonium ions tetradecyltrimethylammonium, dodecyltrimethylammonium, benzyldimethyl(2-hydroxyethyl)ammonium, and tetrabutylammonium with selectivity coefficients ranging from 10−1.7 to 10−5.5. Use of a single electrode to determine accurately the total cationic surfactant concentration in common cleaning solutions is accomplished with information about concentration dependent interferences and a modified Nikolsky–Eisenman model. Finally, quaternary ammonium surfactants have a deleterious effect on the measurements of pH and common ions like K+, Mg2+ and Ca2+ with polymeric ISEs. This makes it critical to include surfactant electrodes in a detector array when cleaning agents are present.  相似文献   

13.
The ΔG, ΔH and ΔS values for the dissociation of 2-mercaptoethanol (MEL) and 3-mercapto-1,2-propanediol and for the formation of complexes between these ligands and the metal ions Ni2+, Zn2+, Cd2+ and Pb2+ have been determined calorimetrically in 0.5 M KNO3 and at 25°C.  相似文献   

14.
The reaction of trans-X(CO)4WCNR2 (X = Br, R = c hex (cyclohexyl); X = Cl, R = c hex, ipr (isopropyl) with M+X (M+ = NEt4+, X = Br; M+ = PPN+, X = Cl) leads under substitution of one CO ligand to new anionic dihalo(tricarbonyl)carbyne-tungsten complexes of the type M+ mer-[(X)2(CO)3WCNR2] (M+ = NEt4+, X = Br, R = c hex; M+ = PPN+, X = Cl, R = c hex, i pr), whose composition and structure were determined by elemental analysis as well as by IR, 1H and 13C NMR spectroscopy. In the anionic carbyne complexes the entered halogen ligand, coordinated in a cis position relative to the carbyne ligand on the metal, can be easily substituted by neutral nucleophiles, as the reaction of PPN+ mer-[(Cl)2(CO)3WCNchex2] with PPh3 demonstrates yielding the neutral carbyne complex mer-[Cl(CO)3(PPh3)WCNchex2].  相似文献   

15.
Bismuth as BiCl4 and BH4 ware successively retained in a column (150 mm × 4 mm, length × i.d.) packed with Amberlite IRA-410 (strong anion-exchange resin). This was followed by passage of an injected slug of hydrochloric acid resulting in bismuthine generation (BiH3). BiH3 was stripped from the eluent solution by the addition of a nitrogen flow and the bulk phases were separated in a gas–liquid separator. Finally, bismutine was atomized in a quartz tube for the subsequent detection of bismuth by atomic absorption spectrometry. Different halide complexes of bismuth (namely, BiBr4, BiI4 and BiCl4) were tested for its pre-concentration, being the chloride complexes which produced the best results. Therefore, a concentration of 0.3 mol l−1 of HCl was added to the samples and calibration solutions. A linear response was obtained between the detection limit (3σ) of 0.225 and 80 μg l−1. The R.S.D.% (n = 10) for a solution containing 50 μg l−1 of Bi was 0.85%. The tolerance of the system to interferences was evaluated by investigating the effect of the following ions: Cu2+, Co2+, Ni2+, Fe3+, Cd2+, Pb2+, Hg2+, Zn2+, and Mg2+. The most severe depression was caused by Hg2+, which at 60 mg l−1 caused a 5% depression on the signal. For the other cations, concentrations between 1000 and 10,000 mg l−1 could be tolerated. The system was applied to the determination of Bi in urine of patients under therapy with bismuth subcitrate. The recovery of spikes of 5 and 50 μg l−1 of Bi added to the samples prior to digestion with HNO3 and H2O2 was in satisfactory ranges from 95.0 to 101.0%. The concentrations of bismuth found in six selected samples using this procedure were in good agreement with those obtained by an alternative technique (ETAAS). Finally, the concentration of Bi determined in urine before and after 3 days of treatment were 1.94 ± 1.26 and 9.02 ± 5.82 μg l−1, respectively.  相似文献   

16.
Amberlite XAD-2 has been functionalized by coupling it, through the ---N=N--- group, with Pyrocatechol Violet (PV), and the resulting resin has been characterized by elemental analysis, thermogravimetric analysis (TGA) and IR spectra. The resin has been used for preconcentrating Zn(II), Cd(II), Pb(II) and Ni(II) ions prior to their determination by flame atomic absorption spectrometry. The optimum pH values for quantitative sorption are 5, 5–7, 4, and 3 for Zn, Cd, Pb and Ni, respectively. The four metals can be desorbed (recovery ˜98%) with 4 M HNO3; also, 4 M HCl is equally suitable except for Zn. The sorption capacity of the resin is 1410, 1270, 620 and 1360 μg g−1 resin for Zn, Cd, Ni and Pb, respectively. The effect of F, Cl, NO3, SO42− and PO43− on the sorption of these four metal ions has been investigated. They are tolerable in the range 0.01–0.20 M, for Pb. In the sorption of Zn(II) and Ni(II), the tolerance limits of all these ions are upto 0.01 M, whereas for Cd(II), F, NO3, and PO43− have been found to be tolerable upto 0.50, 0.10 and 0.10 M, respectively. The preconcentration factors are 60, 50, 23 and 18 for Zn, Cd, Pb and Ni, respectively. Simultaneous collection and determination of the four metals are possible. Cations commonly present in drinking water do not affect the sorption of either metal ion if present at a concentration level similar to that of water. The method has been applied to determine Zn, Ni and Pb content of well-water samples (RSD ≤9%).  相似文献   

17.
Three different mixed aza-thioether crowns containing a 1,10-phenanthroline sub-unit were investigated to characterize their abilities as copper(II) ion carriers in PVC-membrane electrodes. The electrode based on L1 exhibited a Nernstian response for Cu2+ ions over a wide concentration range (2×10−1 to 1×10−5 M) with a limit of detection of 8.0×10−6 M (0.5 p.p.m.). The response time of sensor is 15 s, and the membrane can be used for more than 3 months without observing any deviation. The electrode revealed comparatively good selectivities with respect to many alkali, alkaline earth, transition and heavy metal ions, and could be used in a pH range of 2.5–5.5. It was applied to the direct determination and potentiometric titration of the copper(II) ion.  相似文献   

18.
Gao J  Zha F  Chen H  Kang J 《Talanta》1995,42(12):1897-1903
The reaction behaviour of the β-type chelates of lanthanide ions (Ln3+) with p-bromochloroarsenazo (4-CAsA-pB) in 0.01 mol l−1 HClO4 solution has been studied systematically by a spectrophotometric method. All the lanthanide ions can form β-type chelates with p-bromochloroarsenazo. The maximum absorption wavelength is in the range 727–731 nm, the molar absorptivities are about 6.0 × 104 – 9.0 × 104 cm2 mol−1, the composition ratio of Ln3+ ions with 4-CAsA-pB is 1:2 and the actual combining ratio is 2:4. The optimum acidity range (ΔpH value) of the formation of β-type chelates has been obtained. Kinetic parameters, such as the reaction order and rate constants, have also been studied and a formation mechanism for the β-type chelates has been proposed.  相似文献   

19.
Photodynamic properties of series of metal complexes having the general formula [M(diars)2X2]ClO4 or BF4 where M = Co3+, Cr3+, Rh3+; X = Cl, Br, I, diars = o-phenylene bis(dimethylarsine) are studied. Photogeneration of singlet oxygen is monitored by both optical and EPR methods. In comparison with rose bengal ((1O2) for RB = 0.76), singlet oxygen generating efficiencies of these complexes are determined. Rate of N,N-dimethyl-4-nitrosoaniline (RNO) bleaching is found to be retarded by specific 1O2 quencher NaN3, confirming the involvement of 1O2 as an active intermediate. Photolysis of these complexes in the presence of spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) generates 12-line EPR spectra, characteristic of O2 adduct. Photogeneration of O2 is also monitored by optical spectroscopy using superoxide dismutase (SOD) inhibitable cytochrome c reduction assay. The results indicate that the [Co(diars)2Br2]ClO4 complex possesses high ability to generate reactive oxygen species (ROS). Both Type I and II paths are involved in the photosensitisation of the metal complexes. The antimicrobial activity of the complexes against selected bacteria is estimated. The relationship between the enzymatic production of ROS and antimicrobial activity of the complexes is examined and a good correlation between two factors is found. The [CoBr2(diars)2]ClO4 complex investigated in this study effect photo cleavage of the plasmid DNA (pUC18).  相似文献   

20.
A PVC membrane electrode based on bis-2-thiophenal propanediamine (TPDA) coated directly on graphite is described. The electrode exhibits a Nernstian response for Cu2+ over a very wide concentration range (1.0×10−1 to 6.0×10−8 M) with a detection limit of 3.0×10−8 M (2.56 ng ml−1). It has a fast response time and can be used for at least 2 months without any major deviation. The proposed sensor revealed very good selectivities for Cu2+ over a wide variety of other metal ions and could be used in the pH range of 3.0–7.0. It was successfully used for direct determination of copper in black tea and as an indicator electrode in potentiometric titration of copper ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号