首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We explore nanocavitation around the crack tip region in a styrene‐butadiene random copolymer filled with typical carbon black (CB) particles used in the rubber industry for toughening the rubber. Using quasistatic loading conditions and a highly collimated X‐ray microbeam scanned around the crack tip, we demonstrate the existence of a damage zone consisting of nanovoids in a filled elastomer matrix. The existence of voids near the crack tip is demonstrated by a significant increase of the scattering invariant Q/Q0 in front of both fatigued and fresh cracks. The size of the zone where cavities are present critically depends on the macroscopic strain εm, the loading history, and the maximum energy release rate G applied to accommodate the crack. Our findings show that nanovoiding occurs before fracture in typical CB‐filled elastomers and that realistic crack propagation models for such elastomers should take into account a certain level of compressibility near the crack tip. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 422–429  相似文献   

2.
Crack propagation tests were performed on an amorphous polymer, poly(methyl methacrylate), to investigate fatigue crack propagation mechanisms. A scanning laser microscope with a newly developed tensile testing machine was used to observe in situ crack propagation in compact‐type specimens. A crack usually propagated within the craze located at the crack tip under both static and cyclic loading conditions. When a crack stably propagated into the craze under static loading conditions, bright bands composed of the broken craze were observed at the edges along the crack wakes. However, there were successive ridges and valleys in place of bright bands along the crack wakes under cyclic loading conditions. When stable fatigue cracks were propagated at the loading half‐cycle in each cycle, new craze fragments appeared that were similar to the bright bands under static loading. However, the thickness of these fragments decreased in the following loading cycle, and a new valley was formed. This suggested that the valleys were formed by the contact between the fracture surfaces near the crack tip during unloading. Fatigue crack propagation is thought to be due to fibrils weakened by crack closure between fracture surfaces. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 3103–3113, 2001  相似文献   

3.
This article presents the fracture behavior and applicability of the fictitious crack (FC) model to describe the fracture of a porous poly(methyl methacrylate) material. Two test geometries, wedge‐opening load and single‐edge‐notched beam, were employed under two different test conditions (room temperature and in water at 45 °C); all presented quasibrittle fracture behavior. The crack profile of a wedge‐opening load sample was visualized and measured with the digital image correlation technique. The mechanical response of all the samples, including the crack profile, was successfully modeled with the FC model, and this showed the good applicability of this model to the fracture of this granular poly(methyl methacrylate) material. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1112–1122, 2003  相似文献   

4.
A new methodology to investigate the failure of elastomers in a confined geometry has been developed and applied to model end-linked polyurethane elastomers. The experimental in situ observations show that the elastomers fail by the growth of a single cavity nucleated in the region of maximum hydrostatic stress. Tests carried out at different temperatures for the same elastomer show that the critical stress at which this crack grows is not proportional to the Young's modulus E but depends mainly on the ratio between the mode I fracture energy GIC and E. A reasonable fit of the data can be obtained with a model of cavity expansion by irreversible fracture calculating the energy release rate by finite elements with a strain hardening constitutive equation. Comparison between different elastomers shows that the material containing both entanglements and crosslinks is both tougher in mode I and more resistant to cavitation relative to its elastic modulus. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48:1409–1422, 2010  相似文献   

5.
In this study, fracture toughness of nanocomposite hydrogels is quantified, and active mechanisms for dissipation of energy of nanocomposite hydrogels are ascertained. Poly(N,N‐dimethylacrylamide) nanocomposite hydrogels are prepared by in situ free radical polymerization with the incorporation of Laponite, a hectorite synthetic clay. Transmission electron microscopy proves exfoliation of clay platelets that serve as multifunctional crosslinkers in the created physical network. Extraordinary high fracture energies of up to 6800 J m?2 are determined by the pure shear test approach, which shows that these soft and stretchable hydrogels are insensitive to notches. In contrast to single‐ and double‐network hydrogels, dynamic mechanic analysis and stress relaxation experiments clarify that significant viscoelastic dissipation occurs during deformation of nanocomposite hydrogels. Similar to double‐network hydrogels, crack tip blunting and plastic deformation also contribute to the observed massive fracture energies. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1763–1773  相似文献   

6.
Mechanical properties including the failure behavior of physically assembled gels or physical gels are governed by their network structure. To investigate such behavior, we consider a physical gel system consisting of poly(styrene)‐poly(isoprene)‐poly(styrene)[PS‐PI‐PS] in mineral oil. In these gels, the endblock (PS) molecular weights are not significantly different, whereas, the midblock (PI) molecular weight has been varied such that we can access gels with and without midblock entanglement. Small angle X‐ray scattering data reveals that the gels are composed of collapsed PS aggregates connected by PI chains. The gelation temperature has been found to be a function of the endblock concentration. Tensile tests display stretch‐rate dependent modulus at high strain for the gels with midblock entanglement. Creep failure behavior has also been found to be influenced by the entanglement. Fracture experiments with predefined cracks show that the energy release rate scales linearly with the crack‐tip velocity for all gels considered here. In addition, increase of midblock chain length resulted in higher viscous dissipation leading to a higher energy release rate. The results provide an insight into how midblock entanglement can possibly affect the mechanical properties of physically assembled triblock copolymer gels in a midblock selective solvent. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1014–1026  相似文献   

7.
The objectives of this paper are to study the crystallization behavior and fracture characteristics of spherical alumina (Al2O3) nanoparticle‐filled polypropylene (PP) composites. Nanocomposites containing 1.5–5.0 wt % of the Al2O3 nanoparticles (pretreated with silane coupling agent) were prepared for this investigation. Wide angle X‐ray diffraction (WAXD) results show that a small amount of β‐crystal of PP forms after adding the Al2O3 nanoparticles. According to differential scanning calorimetric (DSC) and optical microscopy (OM) measurements, the Al2O3 nanoparticles make PP spherulite size reduced and crystallization temperature of PP enhanced, by acting as effective nucleating agents. However, there are no obvious differences in the crystallinity for the virgin PP and the Al2O3/PP nanocomposites. Tensile test shows that both the Young's modulus and the yield strength of the Al2O3/PP nanocomposites increase with the particle content increasing, suggesting that the interfacial interaction between the nanoparticles and PP matrix is relatively strong. Under quasi‐static loading rate, the fracture toughness (KIC) of the Al2O3/PP nanocomposites was found to be insensitive to nanoparticle content. Under impact loading rate, the Izod impact strength and the impact fracture toughness (Gc) indicate that the impact fracture toughness increases initially with the addition of 1.5 wt % of the Al2O3 nanofillers into the PP matrix. However, with the further addition of up to 3.0 and 5.0 wt % nanoparticles, both the Izod impact strength and impact Gc change very little. By observing the single‐edge‐double‐notch (SEDN) specimens with optical microscopy after four point bending (4PB) tests, it was found that numerous crazes and microcracks form around the subcritical crack tip, indicating that crazing and microcracking are the dominant fracture mechanisms. Scanning electron microscopy (SEM) observation confirms this result. In addition, when the strain rate of 4PB tests was increased, some wave‐like branches were formed along the fractured edge for the Al2O3/PP nanocomposites. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3652–3664, 2005  相似文献   

8.
The fracture behavior and deformation mechanisms of polypropylene modified by elastomeric metallocene‐catalyzed polyolefin blends were investigated under both static and dynamic loading conditions. The fracture toughness was evaluated with the J integral approach. The development of damage mechanisms was studied by the examination of fracture surfaces with scanning electron microscopy and by the examination of single‐edge, double‐notch, four‐point‐bending or low‐impact‐energy fractured samples with optical microscopy. In addition, tensile dilatometry measurements were carried out to determine the nature of the deformation micromechanisms. The fracture behavior and the size and shape of the damage zones were drastically influenced by the elastomeric particles and the imposed constraint. The role of the elastomeric particles was different, depending on the strain rate. Under impact loading, particle pullout and crazing were responsible for the increased fracture toughness of polypropylene. Under quasistatic loading, stable fracture growth was caused by particle cavitation, which promoted ductile tearing of polypropylene before failure continued in an unstable fashion via crazing. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1075–1089, 2004  相似文献   

9.
A three‐dimensional (3D) lamellar structure of a poly(styrene‐block‐isoprene) block copolymer was observed at submicrometer and micrometer levels by scanning electron microscopy combined with a focused ion beam (FIB–SEM). The 3D lamellar structure with an exceptionally large periodicity, about 0.1 μm, was successfully reconstructed, and the size of the reconstructed image by FIB–SEM was 6.0 × 6.0 × 4.0 μm3, which was greater than the transmission electron microtomography data, 3.8 × 3.9 × 0.24 μm3, by a factor of about 40. This result indicates that 3D reconstruction using FIB–SEM is quite useful for direct 3D observations, especially analyses of polymeric materials at the submicrometer and micrometer levels. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 677–683, 2007  相似文献   

10.
Pinhole formation in proton exchange membranes (PEM) may be caused by a process of flaw formation and crack propagation within membranes exposed to cyclic hygrothermal loading. Fracture mechanics can be used to characterize the propagation process, which is thought to occur in a slow, time‐dependent manner under cyclic loading conditions, and believed to be associated with limited plasticity. The intrinsic fracture energy has been used to characterize the fracture resistance of polymeric material with limited viscoelastic and plastic dissipation, and has been found to be associated with long‐term durability of polymeric materials. Insight into this limiting value of fracture energy may be useful in characterizing the durability of proton exchange membranes, including the formation of pinhole defects. In an effort to collect fracture data with limited plasticity, a knife slit test was adapted to measure fracture energies of PEMs, resulting in fracture energies that were two orders of magnitude smaller than those obtained with other fracture test methods. The presence of a sharp knife blade reduces crack tip plasticity, providing fracture energies that may be more representative of the intrinsic fracture energies of the thin membranes. Three commercial PEMs were tested to evaluate their fracture energies (Gc) at temperatures ranging from 40 to 90 °C and humidity levels varying from dry to 90% relative humidity (RH). Experiments were also conducted with membrane specimens immersed in water at various temperatures. The time temperature moisture superposition principle was applied to generate fracture energy master curves plotted as a function of reduced cutting rate based on the humidity and temperature conditions of the tests. The shift with respect to temperature and humidity suggests that the slitting process is viscoelastic in nature. Also such shifts were found to be consistent with those obtained from constitutive tests such as stress relaxation. The fracture energy is more sensitive to temperature than on humidity. The master curves converge at the lowest reduced cutting rates, suggesting similar intrinsic fracture energies; but diverge at higher reduced cutting rates to significantly different fracture energies. Although the relationship between Gc and ultimate mechanical durability has not been established, the test method may hold promise for investigating and comparing membrane resistance to failure in fuel cell environments. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 333–343, 2010  相似文献   

11.
We present a three‐dimensional (3D) model for adhesion enhancement due to crack trapping in a film‐terminated fibrillar structure. Adhesion enhancement occurs due to trapping of the interfacial crack in the region between fibrils. Energy release to the crack tip is attenuated because, between fibrils, it has to pass through the compliant terminal film. Using perturbation theory and a finite element method, we solve for the shape of crack front, which is unknown. Our model thus also allows us to study how adhesion enhancement depends on the arrangement of fibrils. For example, our model explains why, for a fixed area density of fibrils and for similar crack orientations, hexagonal arrays have higher adhesion than square arrays. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2368–2384, 2009  相似文献   

12.
A simple method for nanocrystalline cellulose (NCC)/fluorinated polyacrylate was developed by RAFT‐mediated surfactant‐free emulsion polymerization, in which the nanocomposites formed a core‐shell spherical morphology. The influence of the content of NCC‐g‐(PAA‐b‐PHFBA) (AA was acrylic acid, HFBA was hexafluorobutyl acrylate) on the properties of latex and film were systematically studied. The monomer conversion, the tensile strength, and water–oil repellency of film increased first and then decreased, the latex particle size decreased first and then decreased, when the content of NCC‐g‐(PAA‐b‐PHFBA) increased from 1 to 6 wt %. Elongation at break and thermal stability distinctly decreased when the content of NCC‐g‐(PAA‐b‐PHFBA) gradually increased. XPS showed that the fluorine‐containing groups well concentrated at the film–air interfaces during the annealing process. SEM analysis revealed that the treated fiber had a rugged surface, and the treated fabric had an excellent water repellency. In addition, this green grafting method in water offered a new perspective for the fabrication of exceptional NCC‐based nanocomposites with NCC as the core and also helped to promote the potential applicability of NCC in a range of multipurpose applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1305–1314  相似文献   

13.
Additive manufacturing (AM), otherwise known as three‐dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education, and medicine. Although a considerable amount of progress has been made in this field, additional research work is required to overcome various remaining challenges. Recently, one of the actively researched areas lies in the AM of smart materials and structures. Electroactive materials incorporated in 3D printing have given birth to 4D printing, where 3D printed structures can perform as actuating and/or sensing systems, making it possible to deliver electrical signals under external mechanical stimuli and vice versa. In this paper, we present a lightweight, low cost piezoelectric material based on the dispersion of inorganic ferroelectric submicron particles in a polymer matrix. We report on how the proposed material is compatible with the AM process. Finally, we discuss its potential applications for healthcare, especially in smart implants prostheses. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 109–115  相似文献   

14.
Intercalated nanocomposites of modified montmorillonite clays in a glassy epoxy were prepared by crosslinking with commercially available aliphatic diamine curing agents. These materials are shown to have improved Young's modulus but corresponding reductions in ultimate strength and strain to failure. The results were consistent with most particulate‐filled systems. The macroscopic compressive behavior was unchanged, although the failure mechanisms in compression varied from the unmodified samples. The fracture toughness of these materials was investigated and improvements in toughness values of 100% over unmodified resin were demonstrated. The fracture‐surface topology was examined using scanning electron and tapping‐mode atomic force microscopies and shown to be related to the clay morphology of the system. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1137–1146, 2001  相似文献   

15.
Organic thin film blends of P3HT semiconducting polymers and PCBM fullerenes have enabled large‐scale semiconductor fabrication pertaining to flexible and stretchable electronics. However, molecular packing and film morphologies can significantly alter mechanical stability and failure behavior. To further understand and identify the fundamental mechanisms affecting failure, a multiphase microstructurally based formulation and nonlinear finite‐element fracture methodology were used to investigate the heterogeneous deformation and failure modes of organic semicrystalline thin film blends. The multiphase formulation accounts for the crystalline and amorphous behavior, polymer tie‐chains, and the PCBM aggregates. Face‐on packing orientations resulted in extensive inelastic deformation and crystalline rotation, and this was characterized by ductile failure modes and interfacial delamination. For edge‐on packing orientations, brittle failure modes and film cracking were due to lower inelastic deformation and higher film stress in comparison with the face‐on orientations. The higher crystallinity of P3HT and larger PCBM aggregates associated with larger domain sizes, strengthened the film and resulted in extensive film cracking. These predictions of ductile and brittle failure are consistent with experimental observations for P3HT:PCBM films. The proposed predictive framework can be used to improve organic film ductility and strength through the control of molecular packing orientations and microstructural mechanisms. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 896–907  相似文献   

16.
A method available in literature was adapted and proposed for treating scatter and nonlinearity effects in fracture toughness of polymers in the ductile‐to‐brittle transition regime. The materials used were polypropylene homopolymer (PPH) and a polypropylene‐elastomeric polyolefin blend (PPH/POes 20 wt %), at room temperature and at 20‐mm/min test rate. Under such conditions, the fracture toughness presents a large scatter and a mean value can not be used as a design parameter because it leads to toughness overestimation. Then, there is a need to find a threshold of toughness, as a safe characteristic value for design. The toughness was evaluated by using the J‐integral approach. Large sets of specimens, 53 samples per each material, were tested with the purpose to reveal a reliable tendency in fracture behavior. As the toughness was considered nonuniform throughout the material, a weakest link model was assumed, and then results were analyzed statistically by means of a three‐parameter Weibull model (3P‐W). The PPH responded well to this 3P‐W model, whereas some deviations from the original model were observed in the PPH/POes blend. However, lower‐bound toughness values could be determined for both materials by censoring nonvalid data (Δa > 0.1b0). From an engineering point of view, the results are very encouraging, since this methodology allows to obtain a threshold of fracture toughness from a given population, that is suitable to characterize the material fracture toughness at a given temperature and strain rate. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3674–3684, 2005  相似文献   

17.
Liquid‐crystalline (LC) epoxy resins were cured at different temperatures to obtain polydomain LC phase–cured resins. The cured resins had polydomain structures with a nematic LC phase and their domain diameters differed depending on the curing temperatures. The relationship between the domain diameter and fracture toughness of the diglycidyl ether of terephthalylidene‐bis‐(4‐amino‐3‐methylphenol) (DGETAM)/m‐phenylenediamine (m‐PDA) systems with the nematic phase and the previously reported smectic LC phase structures was investigated. It was clarified that the highly ordered LC structure (smectic phase) in each domain could improve the fracture toughness. In addition, the changes in the network orientation of the DGETAM/m‐PDA systems were evaluated by a mapping of the microscopic infrared dichroism in the fracture process and their toughening mechanism was suggested. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

18.
Charpy drop‐weight‐impact and essential work of fracture (EWF) characteristics of maleic anhydride (MA)‐compatibilized styrene–ethylene butylene–styrene (SEBS)/polypropylene (PP) blends and their composites reinforced with short glass fibers (SGFs) were investigated. MA was grafted to either SEBS copolymer (SEBS‐g‐MA) or PP (PP‐g‐MA). The mPP blend was prepared by the compounding of 95% PP and 5% PP‐g‐MA. Drop‐weight‐impact results revealed that the mPP specimen had an extremely low impact strength. The incorporation of SEBS or SEBS‐g‐MA elastomers into mPP improved its impact strength dramatically. Similarly, the addition of SEBS was beneficial for enhancing the impact strength of the SGF/SEBS/mPP and SGF/SEBS‐g‐MA/mPP hybrids. A scanning electron microscopy examination of the fractured surfaces of impact specimens revealed that the glass‐fiber surfaces of the SGF/SEBS/mPP and SGF/SEBS‐g‐MA/mPP hybrids were sheathed completely with deformed matrix material. This was due to strong interfacial bonding between the phase components of the hybrids associated with the MA addition. Impact EWF tests were carried out on single‐edge‐notched‐bending specimens at 3 m s?1. The results showed that pure PP, mPP, and the composites only exhibited specific essential work. The nonessential work was absent in these specimens under a high‐impact‐rate loading condition. The addition of SEBS or SEBS‐g‐MA elastomer to mPP increased both the specific essential and nonessential work of fracture. This implied that elastomer particles contributed to the dissipation of energy at the fracture surface and in the outer plastic zone at a high impact speed of 3 m s?1. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1881–1892, 2002  相似文献   

19.
Scalable, bottom‐up chemical synthesis and electrospinning of novel Clsubstituted poly(para‐phenylene terephthalamide) (PPTA) nanofibers are herein reported. To achieve Cl‐PPTA nanofibers, the chemical reaction between the monomers was precisely controlled, and dissolution of the polymer into solvent was tailored to enable anisotropic solution formation and sufficient entanglement molecular weight. Electrospinning processing parameters were studied to understand their effects on fiber formation and mat morphology and then optimized to yield consistently high quality fibers. Importantly, the control of relative humidity during the fiber formation process was found to be critical, likely because water promotes hydrogen bond formation between the PPTA chains. The fiber and mat morphologies resulting from different combinations of chemistry and spinning conditions were observed using scanning electron microscopy, and observations were used as inputs to the optimization process. Tensile properties of single Cl‐PPTA nanofibers were characterized for the first time using a nanomanipulator mounted inside a scanning electron microscope (SEM), and fiber moduli measuring up to 70 GPa, and strengths exceeding 1 GPa were achieved. Given the excellent mechanical properties measured for the nanofibers, this chemical synthesis procedure and electrospinning protocol appear to be a promising route for producing a new class of nanofibers with ultrahigh strength and stiffness. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 563–573  相似文献   

20.
Reproducible and uncharacteristic tensile stress–strain behavior of cured glassy epoxy‐amine networks produces distinctive fracture surfaces. Test specimens exhibiting plastic flow result in mirror‐like fracture surfaces, whereas samples that fail during yield or strain softening regions possess nominal mirror‐mist‐hackle topography. Atomic force microscopy and scanning electron microscopy reveal branched nodule morphologies in the 50‐nm size scale that may be responsible for the unusual tensile properties. Current hypothesis is that plastic flow of the glassy thermoset occurs through the existence and deformation of these nodular nanostructures. The thermal cure profile of the epoxy‐amine thermoset affects the size and formation of the nodular nanostructure. Eliminating vitrification during thermoset polymerization forms a more continuous phase, reduction in size of the nodules, and eliminates the capacity of the material to yield in plastic flow. This maximizes nanostructure connectivity of the glassy epoxy‐amine thermoset and reduces strain to failure significantly. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1333–1344.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号