首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
3D reduced graphene oxide (rGO)‐wrapped Ni3S2 nanoparticles on Ni foam with porous structure is successfully synthesized via a facile one‐step solvothermal method. This unique structure and the positive synergistic effect between Ni3S2 nanoparticles and graphene can greatly improve the electrochemical performance of the NF@rGO/Ni3S2 composite. Detailed electrochemical measurements show that the NF@rGO/Ni3S2 composite exhibits excellent supercapacitor performance with a high specific capacitance of 4048 mF cm?2 (816.8 F g?1) at a current density of 5 mA cm?2 (0.98 A g?1), as well as long cycling ability (93.8% capacitance retention after 6000 cycles at a current density of 25 mA cm?2). A novel aqueous asymmetric supercapacitor is designed using the NF@rGO/Ni3S2 composite as positive electrode and nitrogen‐doped graphene as negative electrode. The assembled device displays an energy density of 32.6 W h kg?1 at a power density of 399.8 W kg?1, and maintains 16.7 W h kg?1 at 8000.2 W kg?1. This outstanding performance promotes the as‐prepared NF@rGO/Ni3S2 composite to be ideal electrode materials for supercapacitors.  相似文献   

2.
A novel aqueous‐based self‐assembly approach to a composite of iron oxide nanorods on conductive‐polymer (CP)‐functionalized, ultralarge graphene oxide (GO) liquid crystals (LCs) is demonstrated here for the fabrication of a flexible hybrid material for charge capacitive application. Uniform decoration of α‐Fe2O3 nanorods on a poly(3,4‐ethylene‐dioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)‐functionalized, ultralarge GO scaffold results in a 3D interconnected layer‐by‐layer (LBL) architecture. This advanced interpenetrating network of ternary components is lightweight, foldable, and possesses highly conductive pathways for facile ion transportation and charge storage, making it promising for high‐performance energy‐storage applications. Having such structural merits and good synergistic effects, the flexible architecture exhibits a high specific discharge capacitance of 875 F g?1 and excellent volumetric specific capacitance of 868 F cm?3 at 5 mV s?1, as well as a promising energy density of 118 W h kg?1 (at 0.5 A g?1) and promising cyclability, with capacity retention of 100% after 5000 charge–discharge (CD) cycles. This synthesis method provides a simple, yet efficient approach for the solution‐processed LBL insertion of the hematite nanorods (HNR) into CP‐functionalized novel composite structure. It provides great promise for the fabrication of a variety of metal‐oxide (MO)‐nanomaterial‐based binder and current collector‐free flexible composite electrodes for high‐performance energy‐storage applications.  相似文献   

3.
Rechargeable Li‐O2 batteries are promising candidates for electric vehicles due to their high energy density. However, the current development of Li‐O2 batteries demands highly efficient air cathode catalysts for high capacity, good rate capability, and long cycle life. In this work, a hydrothermal‐calcination method is presented to prepare a composite of Co3O4 hollow nanoparticles and Co organic complexes highly dispersed on N‐doped graphene (Co–NG), which acts as a bifunctional air cathode catalyst to optimize the electrochemical performances of Li‐O2 batteries. Co–NG exhibits an outstanding initial discharge capacity up to 19 133 mAh g?1 at a current density of 200 mA g?1. In addition, the batteries could sustain 71 cycles at a cutoff capacity of 1000 mAh g?1 with low overpotentials at the current density of 200 mA g?1. Co–NG composites are attractive as air cathode catalysts for rechargeable Li‐O2 batteries.  相似文献   

4.
2D MoS2 has a significant capacity decay due to the stack of layers during the charge/discharge process, which has seriously restricted its practical application in lithium‐ion batteries. Herein, a simple preform‐in situ process to fabricate vertically grown MoS2 nanosheets with 8–12 layers anchored on reduced graphene oxide (rGO) flexible supports is presented. As an anode in MoS2/rGO//Li half‐cell, the MoS2/rGO electrode shows a high initial coulomb efficiency (84.1%) and excellent capacity retention (84.7% after 100 cycles) at a current density of 100 mA g?1. Moreover, the MoS2/rGO electrode keeps capacity as high as 786 mAh g?1 after 1000 cycles with minimum degradation of 54 µAh g?1 cycle?1 after being further tested at a high current density of 1000 mA g?1. When evaluated in a MoS2/rGO//LiCoO2 full‐cell, it delivers an initial charge capacity of 153 mAh g?1 at a current density of 100 mA g?1 and achieves an energy density of 208 Wh kg?1 under the power density of 220 W kg?1.  相似文献   

5.
Bismuth sulfide nanorod array is directly grown on nickel foam (R‐Bi2S3/NF) to serve as a completely carbon and binder‐free 3D porous oxygen electrode material for lithium‐oxygen (Li‐O2) batteries. The synergistic effect of the fast kinetics of electron transport and gas and electrolyte diffusion provided by the continuous free‐standing network structure and the excellent electrocatalytic activity of the bismuth sulfide nanorod array enables outstanding performance of the oxygen electrode. Li‐O2 battery with the free‐standing R‐Bi2S3/NF oxygen electrode exhibits high energy efficiency (78.7%), good rate capability (4464 mA h g−1 at 1500 mA g−1), as well as excellent cyclability (146 cycles) while maintaining a moderate specific capacity of 1000 mA h g−1. The effect of cathodes with different reactant (O2) and intermediate (LiO2) adsorbability on the product (Li2O2) growth model is studied by first‐principle calculations. The strong O2 adsorption and weak LiO2 adsorption on Bi2S3 drives the growth of large‐size Li2O2 particles via solution growth model. Remarkably, the large‐area pouch‐type Li‐O2 battery delivers an energy density of 330 Wh kg−1. The present results open up a promising avenue toward developing novel electrode architecture for high‐performance Li‐O2 batteries through controlling morphology and functionality of porous electrodes.  相似文献   

6.
Ni20[(OH)12(H2O)6][(HPO4)8(PO4)4]·12H2O nanorods are successfully synthesized via a one‐pot hydrothermal reaction. A high‐performance flexible asymmetric all‐solid‐state supercapacitor based on the obtained Ni20[(OH)12(H2O)6][(HPO4)8(PO4)4]·12H2O nanorods (positive electrode) and graphene nanosheets (negative electrode) is successfully assembled. It is the first report of this nanomaterial applied for all‐solid‐state supercapacitors. Interestingly, a maximum volumetric energy density of 0.446 mW h cm?3 at a current density of 0.5 mA cm?2 and a maximum power density of 44.1 mW cm?3 at a current density of 6.0 mA cm?2 are achieved by the as‐assembled device. What's more, the device also shows excellent mechanical flexibility and little capacitance change after over 5000 charge/discharge cycles at a current density of 0.5 mA cm?2.  相似文献   

7.
Niobium nitride/nitrogen‐doped graphene nanosheet hybrid materials are prepared by a simple hydrothermal method combined with ammonia annealing and their electrochemical performance is reported. It is found by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) that the as‐obtained niobium nitride nanoparticles are about 10–15 nm in size and homogeneously anchored on graphene. A non‐aqueous lithium‐ion capacitor is fabricated with an optimized mass loading of activated carbon cathode and the niobium nitride/nitrogen‐doped graphene nanosheet anode, which delivers high energy densities of 122.7–98.4 W h kg?1 at power densities of 100–2000 W kg?1, respectively. The capacity retention is 81.7% after 1000 cycles at a current density of 500 mA g?1. The high energy and power of this hybrid capacitor bridges the gap between conventional high specific energy lithium‐ion batteries and high specific power electrochemical capacitors, which holds great potential applications in energy storage for hybrid electric vehicles.  相似文献   

8.
Here, we report binder-free vertical-slate-like MoS2 nanostructures on 3D-Ni-Foam (VSL-MoS2@3D-Ni foam) for low-cost high-performance solid-state symmetric supercapacitors (SSCs). The cost-effective, ecofriendly and scalable solvothermal method and its direct incorporation of VSL-MoS2@3D-Ni-foam yield SSCs with excellent electrochemical properties with a wide potential window of 1.0?V. Furthermore, high specific capacitance of 34.1?F?g?1 at a current density of 1.3?A?g?1, an energy density of 4.7?W?h?kg?1 at a high-power density of 650?W?kg?1, and excellent stability with ~82.5% capacitance retention after 10,000 cycles were demonstrated even for SSCs with a binder free MoS2 electrodes on 3D-Ni-foam. These excellent features of the SSCs with VSL-MoS2@3D-Ni-foam substantiate their potential opportunity for future energy applications.  相似文献   

9.
Graphene‐based phosphorus‐doped carbon (GPC) is prepared through a facile and scalable thermal annealing method by triphenylphosphine and graphite oxide as precursor. The P atoms are successfully doped into few layer graphene with two forms of P–O and P–C bands. The GPC used as anode material for Na‐ion batteries delivers a high charge capacity 284.8 mAh g?1 at a current density of 50 mA g?1 after 60 cycles. Superior cycling performance is also shown at high charge?discharge rate: a stable charge capacity 145.6 mAh g?1 can be achieved at the current density of 500 mA g?1 after 600 cycles. The result demonstrates that the GPC electrode exhibits good electrochemical performance (higher reversible charge capacity, super rate capability, and long‐term cycling stability). The excellent electrochemical performance originated from the large interlayer distance, large amount of defects, vacancies, and active site caused by P atoms doping. The relationship of P atoms doping amount with the Na storage properties is also discussed. This superior sodium storage performance of GPC makes it as a promising alternative anode material for sodium‐ion batteries.  相似文献   

10.
This study presents a general approach for the synthesis of carbon‐encapsulated wire‐in‐tube Co3O4/MnO2 heterostructure nanofibers (Co3O4/MnO2@C) via electrospinning followed by calcination. The as‐synthesized Co3O4/MnO2@C is investigated as the sodium‐ion batteries anode material, which not only exhibits a high reversible capacity of 306 mAh g−1 at 100 mA g−1 over 200 cycles, but also shows a cycling stability of 126 mAh g−1 after 1000 cycles at a high current density of 800 mA g−1. The excellent electrochemical performance can be ascribed to the contribution from carbon‐encapsulated outer‐tube Co3O4 and inner‐wire MnO2 heterostructures, which offer a large internal space and good electrical conductivity. The present work can be helpful in providing new insights into heterostructures for sodium‐ion batteries and other applications.  相似文献   

11.
A comparison of electrochemical performance between LiFe0.4Mn0.595Cr0.005PO4/C and LiMnPO4/C cathode materials was conducted in this paper. The cathode samples were synthesized by a nano-milling-assisted solid-state process using caramel as carbon sources. The prepared samples were investigated by XRD, SEM, TEM, energy-dispersive X-ray spectroscopy (EDAX), powder conductivity test (PCT), carbon-sulfur analysis, electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge cycling. The results showed that LiFe0.4Mn0.595Cr0.005PO4/C exhibited high specific capacity and high energy density. The initial discharge capacity of LiFe0.4Mn0.595Cr0.005PO4/C was 163.6 mAh g?1 at 0.1C (1C = 160 mA g?1), compared to 112.3 mAh g?1 for LiMnPO4/C. Moreover, the Fe/Cr-substituted sample showed good cycle stability and rate performance. The capacity retention of LiFe0.4Mn0.595Cr0.005PO4/C was 98.84 % over 100 charge-discharge cycles, while it was only 86.64 % for the pristine LiMnPO4/C. These results indicated that Fe/Cr substitution enhanced the electronic conductivity for the prepared sample and facilitated the Li+ diffusion in the structure. Furthermore, LiFe0.4Mn0.595Cr0.005PO4/C composite presented high energy density (606 Wh kg?1) and high power density (574 W kg?1), thus suggested great potential application in lithium ion batteries (LIBs).  相似文献   

12.
A novel fiber‐in‐tube hierarchical nanostructure of SnO2@porous carbon in carbon tubes (SnO2@PC/CTs) is creatively designed and synthesized though a carbon coating on scalable electrospun hybrid nanofibers template and a post‐etching technique. This 1D nanoarchitecture consists of double carbon‐buffering matrixes, i.e., the external carbon tubular shell and the internal porous carbon skeleton, which can work synergistically to address the various issues of SnO2 nanoanode operation, such as pulverization, particle aggregation, and vulnerable electrical contacts between the SnO2 nanoparticles and the carbon conductors. Thus, the as‐obtained SnO2@PC/CTs nanohybrids used as a lithium‐ion‐battery anode exhibits a higher reversible capacity of 1045 mA h g?1 at 0.5 A g?1 after 300 cycles as well as a high‐rate cycling stability after 1000 cycles. The enhanced performance can be attributed to the wonderful merits of the external carbon protective shell for preserving the integrity of the overall electrode, and the internal porous carbon skeleton for inhibiting the aggregation and electrical isolation of the active particles during cycling.  相似文献   

13.
One of the key strategies used to obtain high‐rate Li‐ion battery is the reduction of the Li‐ion path length inside the active materials and the enhancement of the ionic diffusion outside the active materials. It is demonstrated that electrochemical performance can be improved significantly at high C‐rates using carbon‐coated spherical aggregates or “supraballs” of randomly packed olivine LiFePO4 (LFP) nanoplates as cathode active materials. 258 nm LFP nanoplates with 30 nm thickness are synthesized through a high‐temperature solvothermal method, in which short lithium‐ion channels are formed perpendicular to the top or bottom planes. These thin nanoplates are formed into carbon‐coated “supraballs” through a spray‐drying and thermal annealing process, in which nanoplates are not stacked but randomly packed due to relatively fast drying. Internal and external nanoplate ion diffusion is therefore enhanced simultaneously due to the optimal molecular crystalline structure and interparticle pore structures of the nanoplates. Indeed, the initial capacity of the carbon‐coated supraballs is 162 mAh g?1 (173.34 mAh cm?3) at 0.1 C and more than 80% is retained (≈130.91 mAh g?1) at 50 C. Furthermore, they offer durable cycling stability (>500 cycles) at 1 C without compromising their capacity.  相似文献   

14.
The ―NH2, ―NO2, ―NHNO2, ―C(NO2)3 and ―CF(NO2)2 substitution derivatives of 4,4′,5,5′‐tetranitro‐2,2′‐1H,1′H‐2,2′‐biimidazole were studied at B3LYP/aug‐cc‐pVDZ level of density functional theory. The crystal structures were obtained by molecular mechanics (MM) methods. Detonation properties were evaluated using Kamlet–Jacobs equations based on the calculated density and heat of formation. The thermal stability of the title compounds was investigated via the energy gaps (?ELUMO ? HOMO) predicted. Results show that molecules T5 (D = 10.85 km·s?1, P = 57.94 GPa) and T6 (D = 9.22 km·s?1, P = 39.21 GPa) with zero or positive oxygen balance are excellent candidates for high energy density oxidizers (HEDOs). All of them appear to be potential explosives compared with the famous ones, octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetraazocane (HMX, D = 8.96 km·s?1, P = 35.96 GPa) and hexanitrohexaazaisowurtzitane (CL‐20, D = 9.38 km·s?1, P = 42.00 GPa). In addition, bond dissociation energy calculation indicates that T5 and T6 are also the most thermally stable ones among the title compounds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
To suppress the capacity fade of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 material as cathode materials for lithium-ion battery, we introduce a LiF coating layer on the surface to improve the cycling performance of Li1.2Ni0.13Co0.13Mn0.54O2 material. The modified sample shows a capacity of 163.2 mAh g?1 with a capacity retention of 95% after 100 cycles at a current density of 250 mA g?1, while the pristine sample only delivers a capacity of 129.9 mAh g?1 with a capacity retention of 82%. Compared with the pristine material, the LiF-modified sample exhibits an obvious enhancement in the electrochemical performance, which will be very beneficial for this material to be commercialized on the new energy vehicles and other related areas.  相似文献   

16.
In order to overcome the main obstacles for lithium–sulfur batteries, such as poor conductivity of sulfur, polysulfide intermediate dissolution, and large volume change generated during the cycle process, a hard‐template route is developed to synthesize large‐surface area carbon with abundant micropores and mesopores to immobilize sulfur species. The microstructures of the C/S hybrids are investigated using field emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, Raman spectroscopy, X‐ray photoelectron spectroscopy, nitrogen adsorption–desorption isotherms, and electrochemical impedance spectroscopy techniques. The large surface and porous structure can effectively alleviate large strain due to the lithiation/delithiation process. More importantly, the micropores can effectively confine small molecules of sulfur in the form of S2–4, avoiding loss of active S species and dissolution of high‐order lithium polysulfides. The porous C/S hybrids show significantly enhanced electrochemical performance with good cycling stability, high specific capacity, and rate capability. The C/S‐39 hybrid with an optimal content of 39 wt% S shows a reversible capacity of 780 mA h g?1 after 100 cycles at the current density of 100 mA g?1. Even at a current density of 5 A g?1, the reversible capacity of C/S‐39 can still maintain at 420 mA h g?1 after 60 cycles. This strategy offers a new way for solving long‐term reversibility obstacle and designing new cathode electrode architectures.  相似文献   

17.
The arrangement and construction of 1D carbon nanotubes (CNTs) into frameworks with two or more levels of structures is an essential step to demonstrate their intrinsic properties and promising applications for energy storage. Single‐walled CNTs (SWCNTs) are considered to have more excellent properties compared with multiwalled CNTs (MWCNTs), however, how to appropriately use SWCNTs as building blocks for nanocomposite electrodes is not well understood. Here, a composite cathode containing SWCNT@S coaxial nanocables for Li‐S battery is fabricated by a facile melt‐diffusion strategy. Beneficial from its sp2 carbon nanostructure, higher specific surface area, larger aspect ratio, and interconnected electron pathway, the SWCNT@S cathode have reversible capacities of 676, 441 and 311 mAh g?1 for the first discharging at 0.5 C, 100th discharging at 1.0 C, and discharging at 10.0 C, respectively. These capacities are much higher than the corresponding capacities of the MWCNT@S cathode. By introducing polyethylene glycol (PEG) as a physical barrier to trap the highly polar polysulfide species, the PEG modified SWCNT@S cathode afforded improved reversible capacities. The cycling stability of the reversible capacities is expected to be further improved. The SWCNTs can serve as scaffolds for Li‐S battery with much improved energy storage performance.  相似文献   

18.
Polythiophene‐coated porous silicon core–shell nanospheres (Si@PTh) composite are synthesized by a simple chemical oxidative polymerization approach. The polythiophene acts as a flexible layer to hold silicon grains when they are repeatedly alloying/dealloying with lithium during the discharge/charge process. The long lifespan and high‐current‐density rate ­capability (at a current of 8 A g?1) of the Si@PTh composite are vastly improved compared with as‐prepared Si spheres. Typically, these Si@PTh composite electrodes achieve a reversible capacity of 1130.5 mA h g?1 at 1 A g?1 current density after 500 cycles, and can even possess a discharge capacity up to 451.8 mA h g?1 at 8 A g?1. The improved electrochemical performance can be ascribed to the synergy effects of the flexible PTh coating and the distinctive core–shell nanospheres with porous structure, which can largely alleviate the volume expansion of the Si during alloying with lithium.  相似文献   

19.
Based on energetic compound [1,2,5]‐oxadiazolo‐[3,4‐d]‐pyridazine, a series of functionalized derivatives were designed and first reported. Afterwards, the relationship between their structure and performance was systematically explored by density functional theory at B3LYP/6‐311 g (d, p) level. Results show that the bond dissociation energies of the weakest bond (N–O bond) vary from 157.530 to 189.411 kJ · mol?1. The bond dissociation energies of these compounds are superior to that of HMX (N–NO2, 154.905 kJ · mol?1). In addition, H1, H2, H4, I2, I3, C1, C2, and D1 possess high density (1.818–1.997 g · cm?3) and good detonation performance (detonation velocities, 8.29–9.46 km · s?1; detonation pressures, 30.87–42.12 GPa), which may be potential explosives compared with RDX (8.81 km · s?1, 34.47 GPa ) and HMX (9.19 km · s?1, 38.45 GPa). Finally, allowing for the explosive performance and molecular stability, three compounds may be suggested as good potential candidates for high‐energy density materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Nanostructured ternary/mixed transition metal oxides have attracted considerable attentions because of their high‐capacity and high‐rate capability in the electrochemical energy storage applications, but facile large‐scale fabrication with desired nanostructures still remains a great challenge. To overcome this, a facile synthesis of porous NiCoO2 nanofibers composed of interconnected nanoparticles via an electrospinning–annealing strategy is reported herein. When examined as anode materials for lithium‐ion batteries, the as‐prepared porous NiCoO2 nanofibers demonstrate superior lithium storage properties, delivering a high discharge capacity of 945 mA h g?1 after 140 cycles at 100 mA g?1 and a high rate capacity of 523 mA h g?1 at 2000 mA g?1. This excellent electrochemical performance could be ascribed to the novel hierarchical nanoparticle‐nanofiber assembly structure, which can not only buffer the volumetric changes upon lithiation/delithiation processes but also provide enlarged surface sites for lithium storage and facilitate the charge/electrolyte diffusion. Notably, a facile synthetic strategy for fabrication of ternary/mixed metal oxides with 1D nanostructures, which is promising for energy‐related applications, is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号