首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report a new facile strategy for quickly synthesizing pH sensitive poly(VI‐co‐HEA) hydrogels (VI = N‐vinylimidazole; HEA = 2‐hydroxyethyl acrylate) by frontal polymerization. The appropriate amounts of VI, HEA, and ammonium persulfate (APS)/N,N,N′,N′‐tetramethylethylenediamine (TMEDA) couple redox initiator were mixed together at ambient temperature in the presence of glycerol as the solvent medium. Frontal polymerization (FP) was initiated by heating the upper side of the mixture with a soldering iron. Once initiated, no further energy was required for the polymerization to occur. The dependence of the front velocity and front temperature on the VI/HEA weight ratios were investigated. The pH sensitive behavior, morphology, and heavy metal removal study of poly(VI‐co‐HEA) hydrogels prepared via FP were comparatively investigated on the basis of swelling measurements, scanning electron microscopy, and inductively coupling plasma spectrometer. Results show that the poly(VI‐co‐HEA) hydrogels prepared via FP exhibit good pH sensitivity and adsorption capacity. The FP can be exploited as an alternative means for synthesis of pH sensitive hydrogels in a fast and efficient way. The as‐prepared hydrogels can be applied to remove heavy metals. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4005–4012, 2010  相似文献   

2.
Temperature sensitive poly{N‐[3‐(dimethylaminopropyl)]methacrylamide‐co‐acrylamide} [P(DMAPMA‐co‐AAm)] hydrogels were prepared by the free‐radical crosslinking copolymerization of corresponding monomers in water with N,N‐methylenebisacrylamide as the crosslinker, ammonium persulfate as the initiator, and N,N,N′,N′‐tetramethylethylenediamine as the activator. The swelling equilibrium of the P(DMAPMA‐co‐AAm) hydrogels was investigated as a function of temperature in aqueous solutions of the anionic surfactant sodium dodecyl sulfate and the cationic surfactant dodecyltrimethylammonium bromide. In pure water, regardless of the amount of N,N‐methylenebisacrylamide, the P(DMAPMA‐co‐AAm) hydrogels showed a discontinuous phase transition between 30 and 36 °C. However, the transition temperature changed from discontinuous to continuous with the addition of surfactants; this was ascribed to the conversion of nonionic P(DMAPMA‐co‐AAm) hydrogels into polyelectrolyte hydrogels due to the binding of surfactants through hydrophobic interactions. Additionally, the concentrations of free sodium dodecyl sulfate and dodecyltrimethylammonium bromide ions were measured at different temperatures by conductometry, and it was found that the electric conductivity of the P(DMAPMA‐co‐AAm)–surfactant systems depended strongly on the swelling ratio; most notably, it changed drastically near the phase‐transition temperature of the P(DMAPMA‐co‐AAm) hydrogel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1645–1652, 2006  相似文献   

3.
Frontal polymerization (FP) is applied for the synthesis of β‐cyclodextrin/poly(vinylimidazole‐co‐N‐vinylcaprolactam‐co‐acrylic acid) (β‐CD/P(VI‐co‐NVCL‐co‐AA)) copolymers. The dependence of frontal velocity and temperature on the initiator and cross‐linker are discussed. The synthesized copolymers have been characterized by Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The thermo‐pH dual‐stimuli responsive behavior of the hydrogel is determined by swelling measurement at different temperatures and pH values. Besides, the hydrogels show intrinsic self‐healing behavior and their healing efficiency is determined by the mechanical tests. Interestingly, we integrate FP with microfluidic technology, which may realize the execution of FP under continuous condition. Such simple microfluidics‐FP integrated approach has both methodological and practical value for the synthesis of functional materials. This paper mainly presents the synthesis and characterization of β‐cyclodextrin/poly(vinylimidazole‐co‐N‐vinylcaprolactam‐co‐acrylic acid) (β‐CD/P(VI‐co‐NVCL‐co‐AA)) copolymers by using thermal frontal polymerization (TFP). Hydrogels were found to be self‐healing with good mechanical performance and show dual thermo‐pH responsive behavior. Low‐cost, energy‐saving and efficient method of thermal frontal polymerization process was integrated with microfluidics technology to prepare supraball hydrogel. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1412–1423  相似文献   

4.
pH‐sensitive poly(acrylamide‐co‐itaconic acid) [P(AAm/IA)] hydrogels were prepared by radiation induced copolymerization of acrylamide (AAm) and itaconic acid (IA) at various ratios. Swelling and shrinking behaviors of these hydrogels were found greatly dependent on the composition of the hydrogel and pH of the buffer solution. The basic structural parameters of the P(AAm/IA) networks such as the molecular weight between crosslinks (M c) and polymer–solvent interaction parameter (χ) were also determined using the modified Flory‐Rehner equations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2586–2594, 2004  相似文献   

5.
Novel poly(methacrylamide‐co‐2‐acrylamido‐2‐methyl‐ 1‐propanesulfonic acid) (poly(MAAm‐co‐AMPS)) hydrogels were synthesized by free radical polymerization of methacrylamide (MAAm) and 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPS) in deionized water at 60 °C by using ammonium peroxydisulfate (APS), N,N′‐methylenebisacrylamide (MBAAm) and N,N,N′,N′‐tetramethylethylenediamine (TEMED) as initiator, crosslinker, and activator, respectively. To investigate the effects of feed content on the pH‐ and temperature‐dependent swelling behavior of poly(MAAm‐co‐AMPS), molar ratio of MAAm to AMPS in feed was varied from 90/10 to 10/90. Structural characterization of gels was performed by Fourier transform infrared (FTIR) spectroscopy using attenuated total reflectance (ATR) technique. Thermal and morphological characterizations of gels were performed by thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), respectively. Although an apparent pH‐sensitivity was not observed for the poly(MAAm‐co‐AMPS) gels during the swelling in different buffer solutions, their temperature‐sensitivity became more evident with the increase in AMPS content of copolymer. Thermal stability of poly(MAAm‐co‐AMPS) gels increased with MAAm content. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

6.
In this work, poly((PMMA‐b‐VI)‐co‐AA) (MMA = methyl methacrylate; VI = 1‐vinylimidazole; AA = acrylic acid) hydrogels and poly((PMMA‐b‐VI)‐co‐AA)/TPU (TPU = thermoplastic polyurethane) IPN (interpenetrating polymer networks) hydrogels have been fabricated via versatile infrared laser ignited frontal polymerization by using poly(PMMA‐b‐VI) macromonomer as the mononer. The frontal velocity and Tmax (the highest temperature that the laser beam detected at a fixed point) can be adjusted by varying monomer weight ratios, the concentration of BPO (BPO = benzoyl peroxide) and the amount of TPU. Moreover, the addition of TPU enhances the reactant viscosity to suppress the “fingering” of frontal polymerization (FP) and decrease Tmax of the reaction, providing a new inert carrier (TPU) to assist FP. Through the characterization of Fourier transform‐infrared spectroscopy (FT‐IR), scanning electron microscope (SEM), and differential scanning calorimetry (DSC), the desired structure can be proved to exist in the IPN hydrogels. Furthermore, poly((PMMA‐b‐VI)‐co‐AA)/TPU IPN hydrogels possesses more excellent mechanical behaviors than hydrogels without IPN structure. Besides, the poly((PMMA‐b‐VI)‐co‐AA) hydrogels present splendid sensitive properties toward substances of different flavor including sourness (CA, citric acid or GA, gluconic acid), umami (SG, sodium glutamate), saltiness (SC, sodium chloride), sweetness (GLU, glucose), enabling their potential as artificial tongue‐like sensing materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1210–1221  相似文献   

7.
In this work, a dually sensitive colloidal crystal (CC)‐loaded hydrogel has been synthesized via frontal polymerization (FP) in a facile and rapid way. First, a polystyrene CC film was fabricated by vertical deposition on the inner wall of a test tube. Then, a mixture of acrylic acid (AAc), 2‐hydroxyethyl methacrylate (HEMA), and glycerol along with the initiator and crosslinker was added to this test tube to carry out FP, resulting in the formation of CC‐loaded hydrogel. The influence of the mass ratios of HEMA/AAc on front velocity and temperatures were studied. The swelling behavior, the morphology, and the stimuli‐responsive behavior of the CC‐loaded hydrogels prepared via FP were thoroughly investigated on the basis of swelling measurement, scanning electron microscopy, and reflection spectra. Results show that the as‐prepared CC‐loaded hydrogels exhibit excellent dual sensitivity to both methanol concentrations and pH values with very short response time, which can be observed visually without the aid of instruments. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
We report the facile synthesis of poly(VI‐co‐MAA) superabsorbent polyampholytic hydrogels (VI = N‐vinylimidazole, MAA = methacrylic acid) via plasma‐ignited frontal polymerization (PIFP). On igniting the top surface of the reactants with air plasma, frontal polymerization occurred and poly(VI‐co‐MAA) hydrogels were obtained within minutes. The preparation parameters were investigated, along with swelling capacity, morphology, and chemical structures of poly(VI‐co‐MAA) hydrogels. Interestingly, the hydrogels are superabsorbent in water and show ampholytic characteristic toward pH. Moreover, the hydrogels are able to capture cationic dyes through electrostatic interaction, offering the potential for further development as dye adsorbents for water purification. In addition, nanocomposite hydrogels were obtained by embedding quantum dots (carbon dots or CdS nanocrystals) into the polymer matrix, which endows the nanocomposite hydrogels with favorable fluorescence and potential applications in bioimaging and biosensing. The results indicate that FP can be applied as an alternative means for facile synthesis of multifunctional hydrogels with additional efficiency and energy‐saving. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 912–920  相似文献   

9.
Atmospheric air plasma was created and applied in the frontal polymerization (FP) of fabricating poly(HPA‐co‐VeoVa 10) amphiphilic gels (HPA = 2‐hydroxypropyl acrylate, VeoVa 10 = vinyl versatate) with enhanced physicochemical properties. In plasma‐ignited frontal polymerization (PIFP), once ignited by air plasma, no further energy or treatment was required for the following polymerization. In this system, the comparison between PIFP and thermal frontal polymerization (TFP) was conducted and observed that PIFP and TFP differ considerably in terms of swelling capacity, morphology and component distribution of the products. This finding is of great importance that the simultaneous generation of active radicals in the initial stage can spread throughout reactant and anchor on the synthetic polymer with the assistance of FP. More interestingly, the PIFP‐synthesized copolymer possesses remarkable selective absorption towards organic solvents, which can be facilely manipulated by varying the weight ratios of HPA/VeoVa 10. Obviously, these polymer products could serve as an “organic solvent scavenger” in the field of industrial wastewater treatment. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
To combine the advantages of a biopolymer with hydrotalcite in an enzyme immobilization system, the intercalation polymerization was used to prepare poly(acrylic acid‐co‐acrylamide)/hydrotalcite (PAA‐AAm/HT) nanocomposite hydrogels using sodium methyl allyl sulfonate as intercalation agent. Transmission electron microscopy, X‐ray diffraction, and Fourier transform infrared spectroscopy results revealed that sodium methyl allyl sulfonate chains entered into the interlayer of HT, the interaction between them has taken place, and HT was dramatically exfoliated into nanoscale and homogeneously dispersed in the PAA‐AAm matrix. Transmission electron microscopy and cryo scanning electron microscope results showed that dried hydrogels were regular spherical particles, and swollen hydrogels revealed homogeneous porous network structures. Then, PAA‐AAm/HT nanocomposite hydrogels were used to immobilize carbonic anhydrase (CA), and the CO2 hydration activities of free enzyme and immobilized enzyme were evaluated. Results showed that immobilized CA retained the majority of the enzyme activity. The reason may be the formation of a microenvironment almost all of which is composed of free water inside the porous network structures. Therefore, the immobilized CA is of great potential in the removal of trace CO2 from the closed spaces. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3232–3240, 2009  相似文献   

11.
In this work, we report a versatile infrared laser ignited frontal polymerization technique for the fabrication of a series of poly(DMC‐co‐HPA) hydrogels (DMC = methacryloxyethyltrimethyl ammonium chloride, HPA = hydroxypropyl acrylate). Because the method is based on the exothermic reaction, no further energy is required in the reaction once it is initiated. Moreover, we have found the polymerization process is a pure frontal polymerization model without involving any other reaction process. The dependence of frontal velocity and temperature on the reaction time is thoroughly discussed. The as‐prepared hydrogels are pH‐responsive and their maximum equilibrium swelling ratio could reach ~3,890%. Also, the as‐prepared poly(DMC‐co‐HPA) hydrogels capable of adsorption/desorption switching performance can be utilized for heavy metal ion removal in wastewater treatments. Interestingly, the hydrogels can float on the water surface after intaking heavy metal ions by the combination of kerosene and polyoxyethylene sorbitan monolaurate (Tween 20) in hydrogel components, greatly enhancing treatment efficiency. We believe the method described herein to rapidly construct functional hydrogels with the ability to remove heavy metal ions may find unique applications in emergency processing of water pollution. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2085–2093  相似文献   

12.
In this work, acrylamide/itaconic acid copolymeric hydrogels are prepared by free radical polymerization initiated by redox initiators of potassium persulfate and N ,N ,N ′,N ′‐tetramethyl ethylene diamine; N ,N ′methylene bisacrylamide was employed as a crosslinking agent. Aniline monomer was absorbed in the network of poly(acrylamide‐co‐itaconic acid) P(AAm‐co‐IA) hydrogel and followed by gamma radiation induced polymerization at room temperature. The novel semi‐interpenetrating network was comprised of linear polyaniline immersed in P(AAm‐co‐IA) matrix. Electrical conductivity of the hydrogels was measured using four‐probe technique. The conductivities for the prepared hydrogels are found to increase from 5.5 × 10?7 S cm?1 for P(AAm‐co‐IA) alone to 4.4 × 10?3 S cm?1 for semi‐interpenetrating polymer network P(AAm‐co‐IA)/polyaniline. Thus, a new composite hydrogel with good conductive properties also displaying enhanced mechanical strength and pH sensitivity was prepared. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
We report a new facile strategy for quickly synthesizing poly(2‐hydroxyethyl acrylate‐co‐vinyl versatate) amphiphilic gels with excellent physicochemical properties by frontal free‐radical polymerization. The appropriate amounts of 2‐hydroxyethyl acrylate, vinyl versatate (VeoVa 9) and ammonium persulfate initiator were mixed together at ambient temperature in the presence of N‐methyl‐2‐pyrrolidone as the solvent medium. Frontal polymerization (FP) was initiated by heating the wall of the tube with a soldering iron. Once initiated, no further energy was required for the polymerization to occur. The dependence of the front velocity and front temperature on the initiator concentration was investigated. The front temperatures were between 132 and 157 °C, depending on the initiator concentration. The morphology, swelling rate, and swelling behavior of amphiphilic gels prepared via FP were comparatively investigated on the basis of scanning electron microscopy, water contact angle, and swelling measurements. Results show that the amphiphilic gels prepared via FP behave with good swelling capacity both in water and organic solvents. The FP can be exploited as an alternative means for synthesis of amphiphilic gels with additional advantages of fast and efficient way. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 823–831, 2010  相似文献   

14.
Exfoliated montmorillonite (MMT)/poly(N‐isopropylacrylamide) (PNIPAAm) and MMT/poly(N‐isopropylacrylamide‐co‐acrylamide) [P(NIPAAm‐co‐AAm)] nanocomposites were fabricated by soap‐free emulsion polymerization. Interestingly, as the content of MMT was increased from 0 to 10 wt %, the glass transition temperature of MMT/PNIPAAm was decreased from 145 to 122 °C, whereas that of the MMT/P(NIPAAm‐co‐AAm) increased from 95 to 153 °C. Although the lower critical solution temperature (LCST) of 32 °C for the MMT/PNIPAAm nanocomposites in aqueous solutions was slightly increased with the content of MMT, that of the MMT/P(NIPAAm‐co‐AAm) was decreased from 70 to 65 °C. A mechanism that the hydrogen bonds between the amide groups of PNIPAAm were interfered by the exfoliated MMT nano‐platelets for the MMT/PNIPAAm nanocomposites and the preferred absorption of acrylamide units to the MMT nanoplatelets rather than N‐isopropylacrylamide in the MMT/P(NIPAAm‐co‐AAm) nanocomposites was suggested to interpret these unusual transition behavior. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 524–530, 2009  相似文献   

15.
Dual thermo‐ and pH‐sensitive network‐grafted hydrogels made of poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) network and poly(N‐isopropylacrylamide) (PNIPAM) grafting chains were successfully synthesized by the combination of atom transfer radical polymerization (ATRP), reversible addition‐fragmentation chain transfer (RAFT) polymerization, and click chemistry. PNIPAM having two azide groups at one chain end [PNIPAM‐(N3)2] was prepared with an azide‐capped ATRP initiator of N,N‐di(β‐azidoethyl) 2‐chloropropionylamide. Alkyne‐pending poly(N,N‐dimethylaminoethyl methacrylate‐co‐propargyl acrylate) [P(DMAEMA‐co‐ProA)] was obtained through RAFT copolymerization using dibenzyltrithiocarbonate as chain transfer agent. The subsequent click reaction led to the formation of the network‐grafted hydrogels. The influences of the chemical composition of P(DMAEMA‐co‐ProA) on the properties of the hydrogels were investigated in terms of morphology and swelling/deswelling kinetics. The dual stimulus‐sensitive hydrogels exhibited fast response, high swelling ratio, and reproducible swelling/deswelling cycles under different temperatures and pH values. The uptake and release of ceftriaxone sodium by these hydrogels showed both thermal and pH dependence, suggesting the feasibility of these hydrogels as thermo‐ and pH‐dependent drug release devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.

Acrylamide (AAm)/Acrylic Acid (AAc) copolymers have been prepared by gamma irradiation of binary mixtures at three different compositions where the acrylamide/acrylic acid mole ratios varied around 15, 20, and 30%. Threshold dose for 100% conversion of monomers into hydrogels was found to be 8.0 kGy. Poly(Acrylamide‐co‐Acrylic Acid) (poly(AAm‐co‐AAc)) hydrogels have been considered for the removal of uranyl ions from aqueous solutions. Swelling behavior of these hydrogels was determined in distilled water at different pH values and in aqueous solutions of uranyl ions. The results of swelling tests at pH 8.0 indicated that poly(AAm‐co‐AAc) hydrogel, containing 15% acrylamide showed maximum % swelling. Diffusion of water and aqueous solutions of uranyl ion into hydrogels was found to be non‐Fickian in character and their diffusion coefficients were calculated. The effect of pH, composition of hydrogel, and concentration of uranyl ions on the adsorption process were studied at room temperature. It was found that one gram of dry poly(AAm‐co‐AAc) hydrogel adsorbed 70–320 mg and 70–400 mg uranyl ions from aqueous solutions of uranyl nitrate and uranyl acetate in the initial concentration range of 50–1500 mg UO2 2+L?, depending on the amount of AAc in the hydrogels, respectively. Adsorption isotherms were constructed for poly(AAm‐co‐AAc)–uranyl ion system indicating an S type of adsorption in the Giles classification system. It is concluded that crosslinked poly(AAm‐co‐AAc) hydrogels can be successfully used for the removal of uranyl ions from their aqueous solutions.  相似文献   

17.
Novel hydrophilic and thermosensitive poly(N,N‐diethylacrylamide‐co‐2‐hydroxyethyl methacrylate) resins were prepared by inverse suspension polymerization with N,N′‐methylenebis(acrylamide) as a crosslinker. The effects of chemical composition and degree of crosslinking on the polymerization were investigated. The polymer resins were characterized by elemental analysis, infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. The thermosensitivity of the crosslinked resins was demonstrated by their lower critical swelling temperatures. The swelling and deswelling volume of the beads in water varied depending on the molar fraction of the N,N‐diethylacrylamide. These beads swelled extensively in a variety of common solvents. They had high loadings of functional hydroxyl groups and were used as supports in the solid‐phase synthesis of an oligopeptide. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1681–1690, 2003  相似文献   

18.
In this study, a novel classical thermo‐ and salt‐sensitive semi‐interpenetrating polymer network (semi‐IPN) hydrogel composed of poly(N,N‐diethylacrylamide) (PDEAm) and κ‐carrageenan (KC) was synthesized by free radical polymerization. The structure of the hydrogels was studied by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). FTIR and SEM revealed that the semi‐IPN hydrogels possessed the structure of H‐bonds and larger number of pores in the network. Compared to the PDEAm hydrogel, the prepared semi‐IPN hydrogels exhibited a much faster response rate to temperature changes and had larger equilibrium swelling ratios at temperatures below the lower critical solution temperature (LCST). The salt‐sensitive behavior of the semi‐IPN hydrogels was dependent on the content of KC. In addition, during the reswelling process, semi‐IPN hydrogels showed a non‐sigmoidal swelling pattern. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Thermoresponsive poly(N‐vinylcaprolactam) nanocomposite hydrogels containing graphene were successfully prepared by frontal polymerization. High concentration of graphene (5.0 mg/mL) was obtained by direct graphite sonication in the self‐same liquid monomer, thus avoiding any chemical manipulation and obtaining “real” graphene as nanofiller instead of one of its more or less oxidized derivative, which is what generally reported in published reports. Furthermore, the corresponding nanocomposites were obtained without using any solvent to be eventually removed. The materials were fully characterized by RAMAN, SEM, and TEM, and their swelling behavior and rheological properties were investigated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Dual temperature‐ and pH‐sensitive hydrogels composed of N‐isopropylacrylamide (NIPAM) and 2‐acrylamido‐2‐methyl‐propanosulfonic acid (AMPS) were prepared by free‐radical crosslinking copolymerization in aqueous solution at 22 °C. The mole percent of AMPS in the comonomer feed was varied between 0.0 and 7.5, while the crosslinker ratio was fixed at 5.0/100. The effect of AMPS content on thermo‐ and pH‐ induced phase transitions as well as equilibrium swelling/deswelling, interior morphology and network structure was investigated. The volume phase transition temperature (VPT‐T) was determined by both swelling/deswelling measurements and differential scanning calorimetry (DSC) technique. In addition, the volume phase transition pH (VPT‐pH) was detected from the derivative of the curves of the swelling ratio (dQv/dpH) versus pH. The polymer‐solvent interaction parameter (χ) and the average molecular mass between crosslinks ( ) of hydrogels were calculated from swelling ratios in buffer solutions at various pHs. The enthalpy (ΔH) and entropy (ΔS) changes appearing in the χ parameter of hydrogels were also determined by using the modified Flory–Rehner equation. The negative values for ΔH and ΔS indicated that the hydrogels had a negative temperature‐sensitive property in water, that is, swelling at a lower temperature and shrinking at a higher temperature. It was observed that the experimental swelling data of hydrogels at different temperature agreed with the modified Flory‐Rehner approach based on the affine network model. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1713–1724, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号