首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the structures and electro‐optical properties of epoxy/acrylic polymer‐dispersed liquid‐crystal (PDLC) films. A thermal stimulated current (TSC) analysis was used to investigate the physical structures of PDLC. In the TSC spectrum of PDLC, three relaxation peaks were observed: the glass transition of the liquid crystal, the glass transition of the polymer matrix, and the ρ transition. The ρ transition represents the discharge behavior of space charges, and its intensity increased as the curing time and content of the curing agent dicyandiamide (DICY) increased. The pre‐UV‐cured films with different DICY contents were thermally cured at 130 °C for various periods. The electro‐optical properties of PDLC, such as the contrast ratio and switching voltage, increased as the curing time of DICY, the content of DICY, or both increased. As the ambient temperature increased from 10 to 40 °C, the contrast ratio and switching voltage of PDLC gradually decreased. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 507–514, 2001  相似文献   

2.
Polymer‐dispersed liquid crystals (PDLC) films were prepared from ultraviolet (UV) irradiation‐induced polymerization of the photopolymerizable monomers in photopolymerizable monomers/nematic liquid crystal (LC) mixtures. The effects of the composition of the mixtures, the curing temperature, and the UV light intensity on the microstructure of the polymer network in the PDLC films were investigated. Furthermore, the effects of the microstructures on the light scattering properties of the PDLC films in the wavelength region of 300–2500 nm were studied experimentally and theoretically based on the combination of three kinds of classical light scattering theories: the Rayleigh‐Gans (RG) approach, the anomalous diffraction (AD) approach, and the geometrical optics (GO) approach. It was found that the sizes of LC domain in PDLC films increased with the increase of the LC content as well as the decrease of the UV curing intensity, while increased at first and then decreased with the increase of the curing temperature. Moreover, smaller LC domain sizes could exhibit strong scattering properties in a smaller VIS wavelength region and the transmittance in NIR region (especially in the wavelength range of 1300–2500 nm) obviously decreased with the increasing sizes of LC domain. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2090–2099, 2008  相似文献   

3.
One of the main objectives of the experiment was to achieve the vertical aligned (VA) effect. To accomplish this, we employed liquid crystal (LC)/photo‐curable acrylic monomers mixture systems to prepare vertical alignment copolymer film (VACOF) for LC molecules with the photo‐polymerization induce phase separation (PIPS) process. From previous experimental results, we successfully fabricated LC devices without the micro‐protrusion structure. After the application of a saturated voltage, the LC molecules actually exhibited such interesting phenomena as uniaxial orientation, uniform single‐domain display state, etc. In this study, to obtain VACOF with smooth surface, we similarly controlled appropriate experimental conditions such as UV light exposure intensity and curing temperature, and altered process parameters such as the cell thickness, chemical structure length of the main chain type biphenol acrylic monomer [to simulate the main chain function of the traditional vertical alignment type polyimide (PI)], etc. During the experiment, we discovered that regardless of the cell thickness, this photo‐alignment system would yield the VACOF instead of the polymer disperse liquid crystal (PDLC) film morphology. Another notable finding was that the contrast ratio was heavily influenced by the length of the main chain type acrylic monomer structure for LC/monomer mixture systems, with enhancement of up to ~56%. Therefore, we further investigated the display effects, electro‐optical properties, etc. for these two main chain type acrylic monomer systems with different lengths and cell thicknesses. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, polymer‐dispersed liquid crystal (PDLC) films consisting of liquid crystal (LC)/monomers/indium tin oxide (ITO) nanoparticles with good near‐infrared absorption property had been fabricated, and the influence of the ITO nanoparticles modified with 3‐methacryloxypropyltrimethoxysilane (KH570) on the PDLC films was systematically studied. First, different liquid crystal content was studied to obtain PDLC films with good electro‐optical properties. And then, various weight ratio of ITO nanoparticles was added to samples. While the content of ITO nanoparticles was increased, the saturation voltage increased and the CR decreased. Though the electro‐optical properties of PDLC samples reduced with the addition ITO nanoparticles, the near‐infrared absorption property of films was enhanced.  相似文献   

5.
Effects of the content of fluorinated alkene-terminated liquid crystal (LC) molecules on the physical properties of the fluorinated alkene-terminated LC/E8 mixture were studied. The morphology and electro-optical properties as they doped in polymer-dispersed liquid crystal (PDLC) films were investigated. The detailed discussion of the obtained results is given. As a result, comparing with the physical properties of the series of LC mixtures with the same content of the analogous fully saturated compounds doped with E8, we find that the birefringence is significantly larger for the LC mixture with the alkene-terminated materials. Both fluorinated alkene-terminated LC molecules and the analogous fully saturated compounds doped with E8 reduce the driving voltage of PDLC films. Moreover, PDLC films with the fluorinated alkene-terminated LC molecules possessed higher contrast ratio and faster response time than that of the PDLC films prepared by adding the same mass fraction of the analogous fully saturated compounds. Thus, the ability to manipulate physical properties of LC mixture and electro-optical properties of PDLC films by changing the LC molecular structures may have future relevance for new LC structures design and applications of PDLC films.  相似文献   

6.
选用聚乙二醇二缩水甘油醚(EGDE)/季戊四醇缩水甘油醚(PERTGE)/1,8-二氨基-3,6-二氧杂辛烷(EDBEA)/向列相液晶(SLC1717)复合体系,在不同的固化条件下,通过热聚合诱导相分离方法制备了一系列电光性能不同的聚合物分散液晶(polymer dispersed liquid crystal,简称PDLC)膜.研究了固化温度和固化时间对制备的PDLC膜中聚合物网络的微观形貌和电光性能的影响.结果表明,随着固化温度的升高以及固化时间的缩短,PDLC膜的对比度、驱动电压和开态响应时间逐渐增大,而关态响应时间逐渐减小.在固化温度为363.2 K,固化时间为7 h时,所制备的PDLC膜具有较佳的电光性能.  相似文献   

7.
In this paper, polymer dispersed liquid crystals (PDLC) films with LC content as low as 40 wt% were prepared, and the electro‐optical properties were carefully investigated. To accomplish this, different (meth)acrylate copolymerizaiton monomers have been used. The electro‐optical properties and morphologies of the PDLC films were strongly influenced by the chemical structure of copolymerization monomers (hydroxypropyl methacrylate (HPMA), glycidyl methacrylate, hydroxypropyl acrylate) and their feed ratio. Lower driven voltage and higher contrast ratio were achieved when the PDLC films showed a morphology with suitably LC domain size. At high HPMA content, a thin polymer film was formed on the surface of PDLC samples, which is beneficial to decrease the total LC content in PDLC devices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
ABSTRACT

The structures of the liquid crystal (LC) molecules have a key role in impacting the electro-optical performance of a polymer dispersed liquid crystal (PDLC) film. In this paper, the relationship between the LC molecular structures and the electro-optical properties of PDLC films is investigated based on an unexplored cyano-terminated tolane compounds (CTTCs) doped E8 LCs/UV polymers system. Due to the high polarity of CTTCs, LCs doped with the cyano-terminated tolane (CTT) molecules exhibit high birefringence and large positive dielectric anisotropy. On the whole, PDLC films doped with the CTT molecules exhibit a lower driving voltage than that doped with the pure E8. More excitingly, PDLC films based on CTT molecules with larger length-to-width ratio and longer conjugated system show higher contrast ratio (CR) and faster response time. Eventually, the mechanism of the effects of CTT-based molecular structures and the relationship between the electro-optical performance of PDLC films and CTT molecules are illustrated. This work paves a new way for optimising the electro-optical properties of PDLC films.  相似文献   

9.
The dielectric properties of a polymer‐dispersed liquid crystal (PDLC), a liquid‐crystal (LC) mixture (BL036), and three polymer matrices of PN314 containing different amounts of BLO36 were determined over a range of frequencies and temperatures and, for the LC and PDLC, over a range of voltages leading to homeotropic alignment of the LC. The overall dielectric relaxation process was a weighted sum of contributions from (1) the primary (δ) process in the LC arising from the motions of the dipoles about the short molecular axis and (2) dipole motions in the polymer matrix. The dielectric spectra were determined as a function of frequency, temperature, and, when appropriate, applied voltage. An equivalent electrical circuit was used as a working model to describe the dielectric behavior of the PDLC in the absence and presence of applied voltages. Agreement between the dielectric data and this model was achieved if a portion of the LC phase at the interface was assumed to be immobile. The director order parameter for the LC component in the PDLC was determined from dielectric measurements as the material was aligned homeotropically in an applied electric field. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1173–1194, 2001  相似文献   

10.
The correlations among electrical, optical properties and polymer morphologies of polymer network liquid crystals (PNLCs) constructed with various curing parameters are investigated. The experimental results indicate that high UV curing intensity, low curing temperature and high monomer-dopant concentration reduce the sizes of liquid crystal (LC) domains, thereby decreasing field-off response time and light scattering and increasing phase retardation of the PNLC cells. Photoinitiator concentration affects the LC domain size as well. For instance, increase in photoinitiator concentration results in the acceleration of polymerisation and thus decreases LC domain size. This effect increases driving voltages of the PNLC cells. Notably, excessive amounts of photoinitiator increases the LC domain size of the PNLC cell. Furthermore, dielectric measurement reveals that decrease in the LC domain size generally increases the dielectric relaxation frequency of the PNLC cells. When the LC domain size is small enough, the dielectric relaxation frequency of the PNLC cell is further dominated by the monomer concentration owing to the increased densities of polymer networks that facilitate the alignment of LC molecules.  相似文献   

11.
A polymer‐dispersed liquid‐crystal (PDLC) film was prepared from UV‐curable acrylic, thermally curable epoxy, and a liquid‐crystal (LC) mixture with a fixed LC content of 40 wt %. The UV irradiation and heat treatments were in sequential steps. At first, a phase diagram of a binary mixture of LC (E63) and epoxy [diglycidyl ether of polypropylene glycol (DER736)] was established to understand their miscibility. Then, the phase‐separation temperatures and morphologies of pre‐UV‐cured films with different equivalent DER736/dicyandiamide (DICY) molar ratios were observed. Finally, the polymerization‐induced phase‐separation behavior and morphology of the PDLC film were studied by real‐time observation while the film was maintained at 130 °C under the microscope. The results showed that the acrylic network would not affect the phase‐separation behavior of the E63/DER736 mixture. In both thermally induced and polymerization‐induced phase separations, the undissolved DICY particles acted as nucleation agents and were capable of inducing E63 to separate out early. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2033–2042, 2000  相似文献   

12.
The kinetics of the polymerization induced phase separation of liquid crystal (LC)/monomer mixture has been investigated by means of depolarized light intensity technique and polarized light microscope (PLM). To examine the effect of the electric field, a DC electric field was applied across the mixtures during the phase separation process. The kinetic study indicates that the phase separation process is accelerated when the electric field is applied. The morphologies of the formed polymer dispersed liquid crystal (PDLC) films were observed by PLM. The electric field applied during the phase separation process yields the PDLC with small LC domains and fine morphologies. The clearing temperature (TNI) of the formed PDLC films was measured by the PLM and it is found that the TNI increases with the applied electric field intensity.  相似文献   

13.
Polymer dispersed liquid crystal (PDLC) films were prepared by photopolymerization of liquid crystal (LC)/polymerizable monomers/photoinitiator composites. The effects of the structures of the polymerizable monomers on the electro‐optical properties of PDLC films were investigated. It was found that the length of the molecular chain and the rigidity and flexibility of molecules influenced the structure of the polymer network in the PDLC films somewhat, and then affected the electro‐optical properties of the composites accordingly. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1369–1375, 2008  相似文献   

14.
Partial off-state alignment of the liquid crystal in polymer dispersed liquid crystal (PDLC) droplets was obtained by the application of electric or magnetic fields during their formation. Photopolymerization was used to induce phase separation of the liquid droplets from monomer/liquid crystal solutions. Substantial director directionality was retained in these PDLC films after removal of the fields used during their formation. This alignment affected both the off-state and the on-state electro-optic properties of the films. Transverse electrical fields (5 to 60 V across a 15 μm thickness) applied during PDLC formation from a solution of E7 (BDH Ltd) in a monomer resulted in PDLC films with progressively lower off-state scattering and lower threshold voltage. Strong longitudinal magnetic fields (9 to 14 T) applied during PDLC formation with these materials resulted in strong polarization effects in the light scattering off-state. In the infrared region, where there is less light scattering than in the visible region, the longitudinally aligned films shows tunable birefringent electro-optic effects while retaining the fast time response characteristics of PDLC films with small droplet sizes.  相似文献   

15.
Polymer dispersed liquid crystals (PDLCs) with different sizes of the LC droplets are prepared based on the ultraviolet (UV) light curable acrylate monomers/LCs composites to fabricate the optical diffuser films. To acquire light diffusers with high optical performance, the effects of the monomer structure and the UV light intensity on the micro-structure of the PDLC films are studied. Results show that the PDLC films could exhibit a strong light scattering at the premise of maintaining high transmittance in the visible region. As the LC droplets are spherically dispersed in the polymer networks, when the size of LC droplets is about 3.0 μm, the haze can reach 88.5% and the transmittance is nearly 90.0%, which can be used as a bottom diffuser film. While when the size of LC droplets is about 10.0 μm, the haze and transmittance are 39.2% and 90.2%, respectively; hence, it can be a good choice for a top diffuser film. With the advantages of simple preparation, roll-to-roll industrial production and tunable optical properties, it is supported that the films based on UV-cured PDLC films can be applied as outstanding optical diffuser films in the liquid crystal display industry.  相似文献   

16.
17.
Partial off-state alignment of the liquid crystal in polymer dispersed liquid crystal (PDLC) droplets was obtained by the application of electric or magnetic fields during their formation. Photopolymerization was used to induce phase separation of the liquid droplets from monomer/liquid crystal solutions. Substantial director directionality was retained in these PDLC films after removal of the fields used during their formation. This alignment affected both the off-state and the on-state electro-optic properties of the films. Transverse electrical fields (5 to 60 V across a 15 μm thickness) applied during PDLC formation from a solution of E7 (BDH Ltd) in a monomer resulted in PDLC films with progressively lower off-state scattering and lower threshold voltage. Strong longitudinal magnetic fields (9 to 14 T) applied during PDLC formation with these materials resulted in strong polarization effects in the light scattering off-state. In the infrared region, where there is less light scattering than in the visible region, the longitudinally aligned films shows tunable birefringent electro-optic effects while retaining the fast time response characteristics of PDLC films with small droplet sizes.  相似文献   

18.
Polymer dispersed liquid crystal (PDLC) films were prepared by polymerization-induced phase separation processes using ultraviolet (UV) and electron beam (EB) radiation. A mixture of the nematic LC material E7, an aromatic polyester acrylate, and additional monomeric acrylates was exposed to the EB radiation. A photoinitiator was included in the initial mixture in the case of UV exposure. The electro-optical behaviour of the PDLC films obtained has been investigated as a function of the chosen radiation. The transmission versus voltage curves strongly depend on the curing conditions, and are highly reproducible. Threshold and saturation voltages continuously increase with increasing dose values for UV-cured films, whereas plateau values were reached for EB-cured samples. A small memory effect has been observed for UV-cured systems.  相似文献   

19.
Polymer dispersed liquid crystal (PDLC) films with the size gradient of the LC droplets were prepared based on the epoxy/acrylate hybrid polymer matrix. The ultraviolet (UV) intensity gradient was induced by the UV-absorbing dye over the thickness of the samples. Taking advantage of the difference between the epoxy monomers and acrylate monomers in polymerisation rates and the UV intensity gradient, the gradient distribution of the LC droplet size was formed in PDLC films. The effect of the size gradient of the LC droplets on the electro-optical and the light-scattering properties of PDLC films was investigated. The results showed that due to the size gradient distribution of the LC droplets, PDLC films could exhibit the strong light scattering in the UV-visible-near infrared (VIS-NIR) region. Consequently, it provides a potential approach for modulating NIR light transmittance.  相似文献   

20.
《Liquid crystals》2000,27(3):421-428
Polymer dispersed liquid crystal (PDLC) films were prepared by polymerization-induced phase separation processes using ultraviolet (UV) and electron beam (EB) radiation. A mixture of the nematic LC material E7, an aromatic polyester acrylate, and additional monomeric acrylates was exposed to the EB radiation. A photoinitiator was included in the initial mixture in the case of UV exposure. The electro-optical behaviour of the PDLC films obtained has been investigated as a function of the chosen radiation. The transmission versus voltage curves strongly depend on the curing conditions, and are highly reproducible. Threshold and saturation voltages continuously increase with increasing dose values for UV-cured films, whereas plateau values were reached for EB-cured samples. A small memory effect has been observed for UV-cured systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号