首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用溶胶-凝胶法,将钛酸酯和硅烷偶联剂(KH-560)进行共水解,经涂膜、固化,制备了一系列含有无机二氧化钛纳米相的无机/有机杂化膜层材料,通过不同方法对杂化膜层的微结构、光学、机械和热性质进行了表征.结果表明,所得到的有机/无机纳米复合膜层,在可见光范围内的透过率均在90%以上,同时具有较好的耐热性和较高的折射率(nd=1.47~1.73),并且膜层与基材的附着性好,铅笔硬度达到4~5H.  相似文献   

2.
以γ 缩水甘油氧丙基三甲氧基硅烷 (KH5 6 0 )作中间体 ,用溶胶 凝胶 (Sol Gel)法合成了含对硝基偶氮苯胺 (DO3)生色团的新型键合型有机 /无机复合非线性光学 (NLO)材料 ,在这种有机生色团与无机玻璃键合形成的交联网络结构中 ,无机玻璃的刚性三维结构和优良的高温稳定性能有效抑制NLO生色团的极化松弛 .二次谐波信号 (SHG)测量表明 ,合成的键合型聚合物膜的二阶非线性光学系数 (d33)值达 5 79× 10 -7esu ,NLO稳定性也较好 ;在室温下放置 90天后 ,其d33 值能维持初始值的 93 5 % ;在 10 0℃下放置 30 0min后 ,其d33 值仍能维持初始值的 6 0 %  相似文献   

3.
Combining multiple inorganic components is an effective approach to improve the mechanical properties of inorganic–organic hybrid materials. The inorganic components can form interactions with the organic polymer matrix, and there is thus a need to understand the reinforcement mechanism under the optimal combination of organic polymer and inorganic particles. In this work, we prepared a series of dual inorganic particle–based titania/silica–poly(tetrahydrofuran)–poly(ε-caprolactone) (TiO2/SiO2–PTHF–PCL) hybrids by means of simultaneous cationic ring-opening polymerization and sol–gel reaction. In addition to constructing hybrid networks, the SiO2 and TiO2 components play important roles in multiple toughening mechanisms. The prepared dual inorganic hybrids feature enhanced thermal stability and mechanical properties when compared with the ones with a single inorganic component. The optimized mixing of such two inorganic components is identified through mechanical tests, revealing that the hybrid polymer70/(Si0.6Ti0.4)30 (70/18/12 mass ratio) has the highest compressive failure strain (80%) and compressive ultimate strength (1.3 MPa) as well as storage modulus (120 kPa), enabling elongation of up to 37% when compared with its original length. We thus find that the dual inorganic component approach is an effective strategy to enhance the mechanical properties of hybrid materials, suggesting potential applications as scaffolds for tissue engineering and soft robotics.  相似文献   

4.
Bidimensional hexagonal or centred-rectangular mesoporous zirconia thin films have been reproducibly prepared by evaporation-induced self-assembly (EISA), which are stable up to 300 degrees C, with pore size around 35 A; the films can be post-functionalised with organic ligands presenting different functions, opening a land of opportunities for the design of new hybrid mesostructured materials, based on the synergy of a transition metal oxide network and organic groups.  相似文献   

5.
High‐refractive‐index aminoalkoxysilane‐capped pyromellitic dianhydride (PMDA)–titania hybrid optical thin films (TP0–TP8) were synthesized and characterized in this study. They were prepared with PMDA, aminopropyltrimethoxysilane, and titanium(IV) isopropoxide via a sol–gel process followed by spin coating and multistep baking. Through adjustments in the concentration and reaction time, the inorganic content in the hybrid thin films could be as high as 59.1 wt %. The Fourier transform infrared results indicated successful bonding between the organic and inorganic moieties. However, residues of the chelating ligands were found in the hybrids with high titania contents, affecting their thermal and optical properties. Field emission scanning electron microscopy results suggested a nanosized domain of the titania segment in the hybrid materials TP0–TP8. An atomic force microscopy study suggested that the hybrid thin films had good planarization. The dispersions of the refractive index and extinction coefficient in the wavelength range 190–900 nm were studied. The refractive indices of the prepared hybrid thin films at 633 nm increased linearly from 1.567 to 1.780 with increasing titania content. However, the Abbe numbers of the hybrid thin films showed an opposite trend. Excellent optical transparence was obtained in the visible region for the prepared hybrid thin films. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3419–3427, 2001  相似文献   

6.
Significant research is currently underway to develop environmentally friendly UV-shielding materials. Herein, we have constructed choline citrate (a biobased ionic liquid, IL) stabilized homogeneous gelatin–lignin UV-shielding films with excellent antimicrobial and mechanical properties. The synthesis procedure of the films is less energy demanding, one pot, and sustainable in nature. Prepared films were characterized by mechanical and thermal analysis using UTM and TGA, respectively. ATR-IR and PXRD was employed to explore the possible formation of H-bonding between biopolymers and the IL and the change in crystallinity in films after addition of IL to the gelatin–lignin matrix. Surface morphology of prepared films has been studied using optical microscope, AFM, and field emission SEM (FE-SEM). Optical properties of prepared films were measured using UV/Vis spectroscopy. Antimicrobial activity of the prepared films was tested against Bacillus subtilis. Prepared biofilms showed a sun-protection factor (SPF) of up to ≈45.0, large elongation ≈200 %, and tensile strength ≈70 MPa, which are as good as those values exhibited by organic polymeric films, indicating a promising renewable-resources-based material for UV light blocking.  相似文献   

7.
The entrapment of organic dyes in inorganic solids offers several advantage for solid-state laser applications with respect to the use of liquid or polymer hosts. Among the various inorganic hosts, silica is preferred for its superior mechanical, thermal and optical properties. Organic dyes, such as Rhodamine 6G (Rh6G), can be immobilised in SiO2 both physically (materials of class I), and by covalent bonds (class II materials). In the past years Rh6G-SiO2 class I hybrids were prepared. In this work we propose, for the first time, a Rh6G-SiO2 class II hybrids. We describe the preparation of a suitable sol-gel Rh6G precursor verified by FT-IR analysis and report the characterization of the hybrid materials by means of thermal and porosimetric analysis and optical spectroscopy measurements. The precursor is thermally stable up to ∼250°C, and its optical characteristics (UV-VIS absorbance and photoluminescence, PL) do not change with respect to those of the pristine dye molecule. The PL spectra of the final hybrids show that they are promising candidates for applications in solid state dye lasers.  相似文献   

8.
Inorganic/organic hybrids were obtained by the sol-gel type organic modification reaction of Laponite sidewalls with poly(ethylene glycol) (PEG) bearing alkoxysiloxy terminal functionality. By casting an aqueous dispersion of the hybrid, the flexible and transparent hybrid films were obtained. Regardless of the inorganic/organic component ratio, the hybrid film had the ordered structure of Laponite in-plane flat arrays. The mechanical strength of hybrid films was drastically improved by the presence of cross-linking among alkoxysilyl functionalities of PEG terminals and the absence of PEG crystallines. Hybrid films, especially those that consisted of PEG with short chain, showed good mechanical properties that originate from quasi-homogeneous dispersion of components due to anchoring of PEG terminal to Laponite sidewall and interaction of PEG to Laponite surface.  相似文献   

9.
聚合物-纳米晶杂化材料因结合了有机和无机材料的优点而逐渐地受到了人们普遍的关注,聚合物为纳米晶的形成与生长提供了优良的环境,纳米晶的引入同样也增加和强化了聚合物的功能特性.如聚硫代氨基甲酸酯与TiO2杂化的高折射率薄膜,该薄膜不仅保持了原有的性能,而且有较高的折射率.此外,还有许多不同纳米粒子与不同聚合物的杂化体系.如...  相似文献   

10.
Degradation kinetics of organic-inorganic hybrid materials based on epoxy resin were investigated by thermogravimetric analysis (TGA). The hybrid materials were prepared from diglycidyl ether of bisphenol A (DGEBA) and 3-glycidyloxypropyltrimethoxysilane (GLYMO) polymerised simultaneously by poly(oxypropylene)diamine (Jeffamine D230). Nanometric level of homogeneity in the hybrids was verified by electron microscopy. Energy of activation of degradation for the hybrids with varying inorganic content, as well as for the unmodified epoxy-amine system, was determined by the isoconversional Kissinger-Akahira-Sunose method, and was found to be significantly higher for the hybrid materials than for the unmodified epoxy-amine system. The degradation process was described by empirical kinetic models. The results indicated that presence of the inorganic network influences the mechanism of degradation of organic phase. Greater thermal stability of hybrid materials was confirmed by other parameters obtained from TGA curves.  相似文献   

11.
We have developed a simple and generic preparation of stable organic nanocry stals grown in gel-glass matrices. The synthesis of these hybrid organic-inorganic materials is based on the confined nucleation and growth of organic phases in the pores of dense gels. For bulk nanocomposite samples, narrow size distributions of particles (10–20 nm in diameter) are obtained. We have extended this method to the preparation of organic nanocrystals embedded in sol-gel thin films prepared by spin-coating. For all these nanocomposite materials, we have significantly increased the dye stability and obtained promising optical properties: luminescence, non-linear optical properties or photochromism. Moreover, we have also demonstrated basic working principles of a new type of fluorescent nanosensor through the preparation of organic luminescent nanocrystals grown in silicate films.  相似文献   

12.
In this work we report the influence of the molar composition of the coupling agent, as well as the curing conditions on the mechanical properties of SiO2-PMMA (polymethyl methacrylate) hybrid films deposited on organic acrylic substrates. The SiO2-PMMA hybrid films were deposited by the sol–gel method from hybrid precursor solutions with fixed molar ratio of 1:0.25 for TEOS/MMA (Tetraethyl-orthosilicate/Methylmethacrylate) and TEOS/TMSPM (3-trimethoxysilyl propyl methacrylate) molar ratios ranging from 1:0.05 to 1:0.2. The organic compound TMSPM was used as coupling agent to enhance the bond between the organic and inorganic molecules. The wear resistance, hardness and elastic modulus of the hybrid films were determined by nanoindentation techniques and compared to the substrate mechanical behaviour. The chemical bonding in the hybrid films was analyzed by Fourier Transform Infrared spectroscopy and their transparency by optical transmission and reflection spectroscopy. The friction coefficient and sliding life of the hybrid films were also measured with a pin-on-disc tribometer. The surface morphology and roughness were determined from atomic force microscopy images. The hybrid films with lowest content of coupling agent showed the best mechanical performance in terms of hardness, friction coefficient and wear resistance keeping high optical transparency.  相似文献   

13.
4-hydroxy-4 ‘-nitro azobenzene (NHA) and 4-amino-4 ‘-nitro azobenzene (DO3) were prepared respectively from p-nitrophenylamine as a precursor compound. Two kinds of doped organic/inorganic hybrid nonlinear optical (NLO) materials containing NHA and DO3 were synthesized by Sol-Gel process. The preparation and properties of two NLO materials were studied and characterized by FTIR, IH-NMR, UV-VIS, SEM, DSC and SHG measurements. The results show that the maximum doping amounts of NHA and DO3 in two doped hybrid NLO materials are 7.2(wt)% and ll.3(wt)% respectively, and the corresponding second-order NLO coefficients (d33values) are 2.91 ×l0^-3esu and 6.14×10 -8 esu. Two doped NLO materials have relatively good RT stability, after 90 days at RT the d33 values can maintain about 85% of their initial values, but after l0h at 100℃ can only maintain about 50% of their initial values. In this report, the reasons for high-temperature instability of doped materials were discussed, and the possible improvements were also suggested.  相似文献   

14.
Polymethylsiloxane-oxide hybrid materials can be easily prepared by co-hydrolysis of diethoxydimethylsilane, (DEDMS) and methyltriethoxysilane (MTES) and Ti, Zr and Al alkoxides. The molar ratio between precursors and the nature of metal alkoxides strongly influence the chemical reactions in solution and thus the chemical homogeneity of the gel network. This aspect depends on the degree of co-condensation obtained by the formation of oxygen bridged heterometallic bonds, and affects the structure and properties of polysiloxane-oxide materials.This paper presents the recent results obtained on polymethylsiloxane-oxide materials by equilibrium swelling experiments, dynamic mechanical thermal analysis (DMTA) and mechanical properties measurements. The results highlight the influence of nature and load of the metal oxide precursor on the extent of phase interaction in the hybrid gels. The ability to promote the silanol condensation in DEDMS-derived gels is pointed out by the determination of the soluble fraction of the hybrids and the average molecular weight of the polydimethylsiloxane chains.  相似文献   

15.
Organic/inorganic hybrid materials prepared by the sol–gel approach have rapidly become a fascinating new field of research in materials science. The explosion of activity in this area in the past decade has made tremendous progress in both the fundamental understanding of the sol–gel process and the development and applications of new organic/inorganic hybrid materials. Polymer-inorganic nanocomposite present an interesting approach to improve the separation properties of polymer material because they possess properties of both organic and inorganic such as good permeability, selectivity, mechanical strength, and thermal and chemical stability. Composite material derived by combining the sol–gel approach and organic polymers synthesis of hybrid material were the focus area of review It has also been demonstrated in this review that a more complete understanding of their structure–property behavior can be gained by employing many of the standard tools that are utilized for developing similar structure–property relationships of organic polymers. This review article is introductory in nature and gives introduction to composite materials/nanocomposite, their applications and the methods commonly employed for their synthesis and characterization. A brief literature survey on the polysaccharide templated and polysaccharide/protein dual templated synthesis of silica composite materials is also presented in this review article.  相似文献   

16.
In this study, a series of ultraviolet (UV)‐curable organic–inorganic hybrid coating materials containing phosphorus were prepared by sol–gel approach from acrylate end‐capped urethane resin, acrylated phenyl phosphine oxide oligomer (APPO), and inorganic precursors. TEOS and MAPTMS were used to obtain the silica network and Ti:acac complex was employed for the formation of the titania network in the hybrid coating systems. Coating performance of the hybrid coating materials applied on aluminum substrates was determined by the analysis techniques, such as hardness, gloss, impact strength, cross‐cut adhesion, taber abrasion resistance, which were accepted by international organization. Also, stress–strain test of the hybrids was carried out on the free films. These measurements showed that all the properties of the hybrids were enhanced effectively by gradual increase in sol–gel precursors and APPO oligomer content. The thermal behavior of the hybrid coatings was investigated by thermogravimetric analysis (TGA) analysis. The flame retardancy of the hybrid materials was examined by the limiting oxygen index (LOI); the LOI values of pure organic coating (BF) increased from 31 to 44 for the hybrid materials containing phosphorus (BF‐P:40/Si:10). The data from thermal analysis and LOI showed that the hybrid coating materials containing phosphorus have higher thermal stability and flame resistance properties than the organic polymer. Besides that, it was found that the double bond conversion values for the hybrid mixtures were adequate in order to form an organic matrix. The polycondensation reactions of TEOS and MAPTMS compounds were also investigated by 29Si‐NMR spectroscopy. SEM studies of the hybrid coatings showed that silica/titania particles were homogenously dispersed through the organic matrix. In addition, it was determined that the hybrid material containing phosphorus and silica showed fibrillar structure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A thermally stable and transparent copolymer (PAED) composed of N-allylmaleimide, N-(2-ethylhexyl)maleimide, and diisobutylene as the repeating units was produced by radical copolymerization in the presence of an azo initiator in chloroform at 60 °C. The thiol–ene reaction between the allyl groups included in the side chain of PAED and the mercapto groups (SH) included in a random-type SH-modified silsesquioxane (SQ) as the crosslinker provided PAED–SQ hybrid materials upon heating. The reaction process for this thermal curing was monitored from the intensity changes of characteristic peaks by IR spectroscopy as well as the gravimetric determination of the isolated insoluble fractions. The thermal, optical, and mechanical properties of the hybrids were investigated. The onset and maximum decomposition temperatures were 322–369 °C and 399–431 °C, respectively. The weight residue at 800 °C was 16–40 wt%, which depended on the amount of the SQ content in the feed. These organic–inorganic hybrid materials were highly transparent and exhibited refractive index of 1.522–1.524 and Abbe number of 40.0–45.8. The tensile test and dynamic mechanical analyses were also carried out to investigate the mechanical properties and the network structures of the hybrids. The addition of triallylisocyanurate (TAIC) to the curing system efficiently improved the conversion of the allyl and SH, leading to the more dense network structure and the higher strength and hardness of the cured hybrids. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2294–2302  相似文献   

18.
用三苯二醚四酸二酐 (HQDPA)或二苯酮四酸二酐 (BTDA)与二氨基二苯甲烷 (MDA)缩聚合成出聚酰胺酸溶液 ,将此溶液与过渡金属有机络合物共混 ,再经热亚胺化即可制备出一类新型的气体膜分离用过渡金属有机络合物 聚酰亚胺杂化材料 .对所得杂化材料的各项性能进行了研究 ,结果表明 ,制得的杂化材料保持了聚酰亚胺良好的力学性能、耐热性能和耐溶剂性能 .用广角X 射线衍射和液体天平对所得材料的结构进行了表征 ,结果表明 ,过渡金属有机络合物的加入能够增加聚酰亚胺材料的分子链间距 .因此 ,与相应的聚酰亚胺相比 ,杂化材料的透气系数增大而透气选择性变化不大 .  相似文献   

19.
“Chimie douce” based strategies allow, through the deep knowledge of materials chemistry and processing, the birth of the molecular engineering of nanomaterials. This feature article will highlight some of the main research accomplishments we have performed during the last years. We describe successively the design and properties of: sol–gel derived hybrids, Nano Building Blocks (NBBs) based hybrid materials, nanostructured porous materials proceeds as thin films and ultra-thin films, aerosol processed mesoporous powders and finally hierarchically structured materials. The importance of the control of the hybrid interfaces via the use of modern tools as DOSY NMR, SAXS, WAXS, Ellipsometry that are very useful to evaluate in situ the hybrid interfaces and the self-assembly processes is emphasized. Some examples of the optical, photocatalytic, electrochemical and mechanical properties of the resulting inorganic or hybrid nanomaterials are also presented.  相似文献   

20.
Acrylic resin/titania organic–inorganic hybrid materials were prepared by mixing titania sol produced by the sol–gel process with synthesized thermoplastic acrylic resins. The effects of the amounts of water and acid on hydrolysis and condensation of the sol–gel precursor (titanium n‐butoxide) were characterized by nuclear magnetic resonance, and their corresponding influences on the structure and properties of the hybrid films were investigated by small‐angle X‐ray scattering (SAXS), atomic force microscopy, dynamical mechanical analysis, an Instron testing machine, and ultraviolet–visible spectroscopy. SAXS indicated an open structure and nanoscale size for the titania phase of the hybrids. Higher titania content and a greater amount of water or acid in the sol–gel process resulted in titania domains that were larger size and had a more compact structure. The mechanical and UV‐shielding properties of the organic polymer obviously were improved with titania embedded. As the amount of water or acid in the sol–gel process increased, integrative mechanical properties decreased, with the amount of water having a greater impact than the amount of acid on the structure and optical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3682–3694, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号