首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the field dependence of the entanglement of formation in anisotropic S=1/2 antiferromagnetic chains displaying a T=0 field-driven quantum phase transition. The analysis is carried out via quantum Monte Carlo simulations. At zero temperature the entanglement estimators show abrupt changes at and around criticality, vanishing below the critical field, in correspondence with an exactly factorized state, and then immediately recovering a finite value upon passing through the quantum phase transition. At the quantum-critical point, a deep minimum in the pairwise-to-global entanglement ratio shows that multispin entanglement is strongly enhanced; moreover this signature represents a novel way of detecting the quantum phase transition of the system, relying entirely on entanglement estimators.  相似文献   

2.
The time evolution of entanglement and coherence of two-qutrit states under an XY quantum environment which can exhibit a quantum phase transition has been analyzed. From our results, we find that the quantum phase transition can enhance the entanglement decay and coherence loss when the system is weakly coupled to the environment. Furthermore, the effect of the anisotropy parameter and the size of the environment on entanglement dynamics and coherence has also been discussed.  相似文献   

3.
In this paper,we have investigated the quantum entanglement of quantum states undergoing decoherence from a spin environment which drives a quantum phase transition.From our analysis,we find that the entanglement dynamics depends not only on the coupling strength but also on the external magnetic field and the number of the freedom degrees of the environment.Specially,our results imply that the decay of the entanglement can be enhanced by the quantum phase transition of the environment when the system is coupled to the environment weakly.Additionally,the discussion of the case of the multipartite states with high dimensions is made.  相似文献   

4.
In this paper, we have investigated the quantum entanglement of quantum states undergoing decoherence from a spin environment which drives a quantum phase transition. From our analysis, we find that the entanglement dynamics depends not only on the coupling strength but also on the external magnetic field and the number of the freedom degrees of the environment. Specially, our results imply that the decay of the entanglement can be enhanced by the quantum phase transition of the environment when the system is coupled to the environment weakly. Additionally, the discussion of the case of the multipartite states with high dimensions is made.  相似文献   

5.
The entanglement dynamics of three-qubit states under a general XY spin-chain environment which can exhibit a quantum phase transition is investigated by using negativity as entanglement measure. Our results imply that the entanglement evolution depends not only on the states of concern but also on the system-environment coupling, the anisotropy parameter, the size of the environment, and the strength of the external field applied to the environment. For the cases under study, we find that the entanglement decay is enhanced by quantum phase transition under weak coupling. The conditions to identify quantum decoherence-free subspaces have been discussed.  相似文献   

6.
王林成  申健  衣学喜 《中国物理 B》2011,20(5):50306-050306
This paper studies the discord of a bipartite two-level system coupling to an XY spin-chain environment in a transverse field and investigates the relationship between the discord property and the environment’s quantum phase transition.The results show that the quantum discord is also able to characterize the quantum phase transitions.We also discuss the difference between discord and entanglement,and show that quantum discord may reveal more general information than quantum entanglement for characterizing the environment’s quantum phase transition.  相似文献   

7.
We study the dynamics of multipartite quantum correlations measured by the lower bound of concurrence and quantum discord in a three-qubit system coupled to an XY spin chain. For the initial pure GHZ and W state, we find the lower bound of entanglement is more robust than the quantum discord against the decoherence induced by the spin environment. But for the Werner state, the sudden death of discord is not observed even in the presence of entanglement sudden death. By comparing the evolutions for the GHZ and W states, we show that the W state preserves more quantum correlations than the GHZ state. In addition, we put research emphasis on the relation between the dynamics of multipartite quantum correlations and the quantum phase transition of the spin environment.  相似文献   

8.
We investigate the entanglement between a spin and its environment in impurity systems which exhibit a second-order quantum phase transition separating a delocalized and a localized phase for the spin. As an application, we employ the spin-boson model, describing a two-level system (spin) coupled to a sub-Ohmic bosonic bath with power-law spectral density, J(omega) proportional to omega(s) and 0 < s < 1. Combining Wilson's numerical renormalization group method and hyperscaling relations, we demonstrate that the entanglement between the spin and its environment is always enhanced at the quantum phase transition resulting in a visible cusp (maximum) in the entropy of entanglement. We formulate a correspondence between criticality and impurity entanglement entropy, and the relevance of these ideas to nanosystems is outlined.  相似文献   

9.
We investigate the entanglement swapping of continuous state and the two-mode squeezed vacuum which is exposed variable using the pair coherent state as the input in a phase decoherence environment as the quantum channel. By adopting the log-negativity as the measure of entanglement, we analyze how entanglement of the two initial states and the phase decoherence environment affect the entanglement swapping quality.  相似文献   

10.
We have investigated the quantum phase transition in the ground state of collective Lipkin-Meshkov-Glick model (LMG model) subjected to decoherence due to its interaction, represented by a quantum channel, with an environment. We discuss the behavior of quantum and classical pair wise correlations in the system, with the quantumness of correlations measured by quantum discord (QD), entanglement of formation (EOF), measurement-induced disturbance (MID) and the Clauser-Horne-Shimony-Holt-Bell function (CHSH-Bell function). The time evolution established by system-environment interactions is assumed to be Markovian in nature and the quantum channels studied include the amplitude damping (AD), phase damping (PD), bit-flip (BF), phase-flip (PF), and bit-phase-flip (BPF) channels. One can identify appropriate quantities associated with the dynamics of quantum correlations signifying quantum phase transition in the model. Surprisingly, the CHSH-Bell function is found to detect all the phase transitions, even when quantum and classical correlations are zero for the relevant ground state.  相似文献   

11.
We investigate the entanglement dynamics and decoherence of a multipartite system under an environment which can exhibit a quantum phase transition. Our result implies that the entanglement evolution depends not only on the size of the system and the quantum states of concern but also on the environment. In the sense of the linear entropy to measure decoherence induced by the environment, the decoherence-free subspaces have been identified for our model.  相似文献   

12.
尹少英  刘庆欣  宋杰  许学新  周可雅  刘树田 《中国物理 B》2017,26(10):100501-100501
We investigate the prominent impacts of coupling strengths on the evolution of entanglement and quantum discord for a three-qubit system coupled to an XY spin-chain environment. In the case of a pure W state, more robust, even larger nonzero quantum correlations can be obtained by tailoring the coupling strengths between the qubits and the environment.For a mixed state consisting of the GHZ and W states, the dynamics of entanglement and quantum discord can characterize the critical point of quantum phase transition. Remarkably, a large nonzero quantum discord is generally retained, while the nonzero entanglement can only be obtained as the system-environment coupling satisfies certain conditions. We also find that the impact of each qubit's coupling strength on the quantum correlation dynamics strongly depends on the variation schemes of the system-environment couplings.  相似文献   

13.
颜益营  秦立国  田立君 《中国物理 B》2012,21(10):100304-100304
We study the dynamics of quantum discord and entanglement for two spin qubits coupled to a spin chain with Dzyaloshinsky-Moriya interaction.In the case of a two-qubit with an initial pure state,quantum correlations decay to zero at the critical point of the environment in a very short time.In the case of a two-qubit with initial mixed state,it is found that quantum discord may get maximized due to the quantum critical behavior of the environment,while entanglement vanishes under the same condition.Besides,we observed a sudden transition between classical and quantum decoherence when only a single qubit interacts with the environment.The effects of Dzyaloshinsky-Moriya interaction on quantum correlations are considered in the two cases.The decay of quantum correlations is always strengthened by Dzyaloshinsky-Moriya interaction.  相似文献   

14.
We study the quantum speed limit (QSL) time of a two-qubit system coupled to a spin–chain model with the Dzyaloshinsky–Moriya (DM) interaction. For the Bell state coupled to the Ising model or anisotropic XY model, we find that there is a prominent corresponding relationship between the QSL time and quantum phase transition in a spin–chain environment with larger scale, and the DM interaction can strongly enhance or suppress the response relation. Remarkably, when the surrounding environment is set to the XX model, the DM interaction makes it possible for us to witness the quantum phase transition by the local anomalous enhancement of the QSL time near the critical point. In addition, our analyses indicate that the entanglement can speed-up the system evolution in many-body environment.  相似文献   

15.
Angela Kopp 《Annals of Physics》2007,322(6):1466-1476
We propose that quantum phase transitions are generally accompanied by non-analyticities of the von Neumann (entanglement) entropy. In particular, the entropy is non-analytic at the Anderson transition, where it exhibits unusual fractal scaling. We also examine two dissipative quantum systems of considerable interest to the study of decoherence and find that non-analyticities occur if and only if the system undergoes a quantum phase transition.  相似文献   

16.
We study the spin-field and the spin-spin entanglement in the ground state of a spin-orbit coupled Bose- Einstein condensate. It is found that the spin-field and the spin-spin entanglement can be induced by the spin-orbit coupling. By mapping the system to the Dicke-like model, the system exhibits a quantum phase transition from a normal (spin balanced) phase to superradiant (spin polarized) phase. The Dicke-like phase transition can be captured by the spin-field and the spin-spin entanglement arising from the spin-orbit coupling. The spin-field and the spin-spin entanglement increase as the Raman coupling increases in the superradiant phase, while they decrease with the Raman coupling increasing in the normal phase. We also consider the effect of a finite detuning on these entanglement show that the presence of the detuning suppresses the spin-field and the spin-spin entanglement.  相似文献   

17.
We investigate the properties of entanglement and excited-state quantum phase transition (ESQPT) in a hybrid atom-optomechanical system in which an optomechanical quadratic interaction is introduced into a normal Dicke model. Interestingly, by preparing the ancillary mode in a coherent state, both the quantum entanglement and ESQPT can be realized in a relative weak-coupling condition. Moreover, the entanglement is immune to the A2 term, and a reversed trend of the entropy is obtained when the A2 term is included. Density of states (DoS) and Peres lattice are used to investigate ESQPTs. Compared to a normal Dicke model, the DoS enlarges exp(2rα) times if the ancillary mode is prepared in a coherent state. This work is an extension of the ground-state quantum phase transition, which may inspire further exploration of the quantum criticality in many-body systems.  相似文献   

18.
In this paper,we study quantum dynamics of entanglement and single excitation transfer(SET) in an LH1-RC-type trimer which can describe a basic unit cell in the LH1-RC complex in the photosynthetic process.It is shown that there exists a sudden change of entanglement at the critic point of quantum phase transition(QPT) of the system at low temperatures,the entanglement sudden change caused by the QPT is suppressed at higher temperatures.We investigate the influence of environment on entanglement and SET.We show the generation of the dephasing-assisted entanglement between a donor and an acceptor and the existence of the steady-state entanglement,and demonstrate the entanglement transfer from donor-donor entanglement to donor-acceptor entanglement in the dynamic evolution.We reveal the close relation between the SET probability and donor-acceptor entanglement.Especially,we find that the SET probability is proportional to the amount of donor-acceptor entanglement under certain conditions.  相似文献   

19.
陈士荣  夏云杰  满忠晓 《中国物理 B》2010,19(5):50304-050304
In this paper,we study the quantum phase transition and the effect of impurity on the thermal entanglement between any two lattices in three-qubit Heisenberg XX chain in a uniform magnetic field.We show that the quantum phase transition always appears when impurity parameter is an arbitrary constant and unequal to zero,the external magnetic field and impurity parameters have a great effect on it.Also,there exists a relation between the quantum phase transition and the entanglement.By modulating the temperature,magnetic field and the impurity parameters,the entanglement between any two lattices can exhibit platform-like behaviour,which can be used to realize entanglement switch.  相似文献   

20.
In this paper, we study quantum dynamics of entanglement and single excitation transfer (SET) in an LH1-RC-type trimer which can describe a basic unit cell in the LH1-RC complex in the photosynthetic process. It is shown that there exists a sudden change of entanglement at the critic point of quantum phase transition (QPT) of the system at low temperatures, the entanglement sudden change caused by the QPT is suppressed at higher temperatures. We investigate the influence of environment on entanglement and SET. We show the generation of the dephasing-assisted entanglement between a donor and an acceptor and the existence of the steady-state entanglement, and demonstrate the entanglement transfer from donor-donor entanglement to donor-acceptor entanglement in the dynamic evolution. We reveal the close relation between the SET probability and donor-acceptor entanglement. Especially, we find that the SET probability is proportional to the amount of donor-acceptor entanglement under certain conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号