首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A microstructure model for SBS and SIS triblock copolymers with hard domains as multifunctional reinforcing fillers is proposed. Based on this model and proposed mechanism of large deformations, the probability distribution function of the end-to-end vector for each constituent chain and the free energy of deformation for the total networks was calculated by the combination of statistical thermodynamics and kinetics. A new molecular theory of non-linear visco-elasticity for SBS and SIS at large deformations is presented. It is successful in relating the viscoelastic state to molecular constitution by three important parameters (C 100,C 020, andC 200) of the networks. The relations of stress to strain for four types of deformation, the elastic modulus and the constitutive equation for the stress relaxation were derived from this theory. It provides a theoretical foundation for studying the relationships of multiphase network structures and mechanical properties at large deformations. An excellent agreement between the theoretical relationships and experimental data from the experiments and the reference was obtained.Project supported by the National Natural Foundation of China  相似文献   

2.
Using a power-law ansatz for the temperature dependence of the shear modulus on the level of internal variables, the thermorheological behavior is modeled for viscoelastic fluids of a special group of rheological constitutive equations (rate-type models). The model parameter introduced characterizes thermoelastic contributions. The relation between the model parameter and the physical quantities appearing in deformation processes is discussed. Based on the chosen temperature dependence of the shear modulus, thermodynamically consistent equations like the nonlinear rheological constitutive equation and the temperature equation are derived. The special cases of entirely entropy and energy elastic fluids are also considered. The thermorheological behavior (exo-, - or endothermal processes) of a viscoelastic fluid in a stress-growth experiment followed by relaxation is analyzed with respect to the model parameter.  相似文献   

3.
An alternate constitutive formulation for visco-elastic materials, with particular emphasis on macromolecular viscoelastic fluids, is presented by generalizing Maxwell's idealized separation of elastic and relaxation mechanisms. The notion ofrelative rate of change of elastic stress is identified, abstracted, and formulated with the help of the established theory of finitely elastic isotropic materials. This given a local rate-type constitutive relation for an elastic mechanism in a simple material.For the simplest class of viscoelastic polymer melts, the notion of rate of change of elastic stress and its damped accumulation is identified and formulated. Under conditions of moderate strain rates, this scheme implies the reliable K-BKZ model for a class of polymer melts. An obvious extension generalizes the remaining classical spring-dashpot models. I Set of second-order tensors.A I is identified with a 3 × 3 matrix in a Cartesian co-ordinate system - I sym Set of symmetric second order tensors - Q Orthogonal tensor, i.e.Q T=Q –1. - Symbol for the value of the functional H:X I sym, whereX is the set of piecewise continuous and differentiable strain historiesF to : [t 0,t] I Other functionals, unless otherwise specified, should be interpreted in a similar manner.  相似文献   

4.
The evolution of linear viscoelasticity during the vulcanization of polyethylene is studied through the gel point. The material in the vicinity of the gel point is described by two scaling laws: one characterizes the viscoelasticity at the critical point and a second characterizes the evolution of viscoelasticity near the gel point. Time Resolved Mechanical Spectroscopy is used to observe both scaling phenomena. The material at the gel point displays power law relaxation over five decades of time with a power-law relaxation exponent equal to 0.32. This study conforms with previous findings that this exponent is composition-dependent. The longest relaxation time diverges in the vicinity of the gel point as max |p c - p| –1/, and we find = 0.2. This result conforms with previous reports that this exponent may be independent of composition. The Arrhenius flow activation energy for this material undergoes three-fold changes during crosslinking up to the gel point. A single-adjustable-parameter stretched-exponential-power law relaxation function is an inadequate representation of crosslinked materials over any significant range of extent of the reaction up to the gel point.  相似文献   

5.
We continue the comparison of the results of an interlayer model, based on the theory of elastic continua, and a molecular model, derived from a theory of mixtures, previously presented in terms of bulk moduli K. We now derive expressions for the dependence of the thermal expansivity c on the volume fraction f of the filler, at low and elevated values of f . Correspondencies between the characteristic parameters, viz. adhesion and repulsion ratios on the one hand, and interlayer content and thermal properties of matrix, filler, and layer, on the other, are examined. Since in the molecular theory both andK are derived from an equation of state, the identical set of parameters determines both functions and suggests correlations between them.  相似文献   

6.
A constitutive model in finite viscoelasticity   总被引:1,自引:0,他引:1  
A new constitutive model is suggested for the viscoelastic behavior of rubber-like materials at finite strains. The model treats a viscoelastic medium as a system with a variable number of purely elastic links, which can arise and collapse due to micro-Brownian motion of molecules.Assuming that the processes of birth and death for elastic links are independent of stresses, we obtain operator linear constitutive equations in finite viscoelasticity. According to this model, elastic and viscous effects may be distinguished and described independently of each other by a relaxation measure and a strain energy density.The potential energy of deformations is assumed to depend on the principal invariants of the relative Finger tensor of strains. Unlike the standard approach, we do not suggest any expression for the strain energy densitya priori, but suppose that this function is presented as a sum of two functions of one variable which are found by fitting experimental data.The proposed approach allows results of several experiments (uniaxial tension, biaxial tension, and torsion) for styrene butadiene rubber and butyl rubber to be predicted correctly.  相似文献   

7.
Superposition of oscillatory shear imposed from the boundary and through pressure gradient oscillations and simple shear is investigated. The integral fluid with fading memory shows flow enhancement effects due to the nonlinear structure. Closed-form expressions for the change in the mass transport rate are given at the lowest significant order in the perturbation algorithm. The elasticity of the liquid plays as important a role in determining the enhancement as does the shear dependent viscosity. Coupling of shear thinning and elasticity may produce sharp increases in the flow rate. The interaction of oscillatory shear components may generate a steady flow, either longitudinal or orthogonal, resulting in increases in flow rates akin to resonance, and due to frequency cancellation, even in the absence of a mean gradient. An algorithm to determine the constitutive functions of the integral fluid of order three is outlined.Nomenclature A n Rivlin-Ericksen tensor of order . - A k Non-oscillatory component of the first order linear viscoelastic oscillatory velocity field induced by the kth wave in the pressure gradient - d Half the gap between the plates - e x, e z Unit vectors in the longitudinal and orthogonal directions, respectively - G(s) Relaxation modulus - G History of the deformation - Stress response functional - I() Enhancement defined as the ratio of the frequency dependent part of the discharge to the frequencyindependent part of it at the third order - I *() Enhancement defined as the ratio of the increase in discharge due to oscillations to the total discharge without the oscillations - k Power index in the relaxation modulus G(s) - k i –1 Relaxation times in the Maxwell representation of the quadratic shear relaxation modulus (s 1, s 2) - m i –1, n i –1 Relaxation times in the Maxwell representations of the constitutive functions 1(s 1,s 2,s 3) and 4 (s 1, s 2,s 3), respectively - P Constant longitudinal pressure gradient - p Pressure field - mx ,(3) nz ,(3) Mean volume transport rates at the third order in the longitudinal and orthogonal directions, respectively - 0,(3), 1,(3) Frequency independent and dependent volume transport rates, respectively, at the third order - s = t- Difference between present and past times t and   相似文献   

8.
Response of an elastic Bingham fluid to oscillatory shear   总被引:1,自引:0,他引:1  
The response of an elastic Bingham fluid to oscillatory strain has been modeled and compared with experiments on an oil-in-water emulsion. The newly developed model includes elastic solid deformation below the yield stress (or strain), and Newtonian flow above the yield stress. In sinusoidal oscillatory deformations at low strain amplitudes the stress response is sinusoidal and in phase with the strain. At large strain amplitudes, above the yield stress, the stress response is non-linear and is out of phase with strain because of the storage and release of elastic recoverable strain. In oscillatory deformation between parallel disks the non-uniform strain in the radial direction causes the location of the yield surface to move in-and-out during each oscillation. The radial location of the yield surface is calculated and the resulting torque on the stationary disk is determined. Torque waveforms are calculated for various strains and frequencies and compared to experiments on a model oil-in-water emulsion. Model parameters are evaluated independently: the elastic modulus of the emulsion is determined from data at low strains, the yield strain is determined from the phase shift between torque and strain, and the Bingham viscosity is determined from the frequency dependence of the torque at high strains. Using these parameters the torque waveforms are predicted quantitatively for all strains and frequencies. In accord with the model predictions the phase shift is found to depend on strain but to be independent of frequency.Notation A plate strain amplitude (parallel plates) - A R plate strain amplitude at disk edge (parallel disks) - G elastic modulus - m torque (parallel disks) - M normalized torque (parallel disks) = 2m/R 30 - N ratio of viscous to elastic stresses (parallel plates) =µ A/ 0 ratio of viscous to elastic stresses (parallel disks) =µ A R/0 - r normalized radial position (parallel disks) =r/R - r radial position (parallel disks) - R disk radius (parallel disks) - t normalized time = t — /2 - t time - E elastic strain - P plate strain (displacement of top plate or disk divided by distance between plates or disks) - PR plate strain at disk edge (parallel disks) - 0 yield strain - E normalized elastic strain = E/0 - P normalized plate strain = P/0 - PR normalized plate strain at disk edge (parallel disks) = PR/0 - 0 normalized plate strain amplitude (parallel plates) =A/ 0 — normalized plate strain amplitude at disk edge (parallel disks) =A R/0 - phase shift between P andT (parallel plates) — phase shift between PR andM (parallel disks) - µ Bingham viscosity - stress - 0 yield stress - T normalized stress =/ 0 - frequency  相似文献   

9.
i) Elastic recovery in polymeric liquids is a cooperative phenomenon in the sense that individual polymer molecules undergoing retraction must interact with one another in order to generate recovery. Stress generated by polymer molecules under an externally imposed flow field may or may not be a cooperative phenomenon. We suggest that the ability to describe the large elastic recovery exhibited by many polymeric liquids furnishes a crucial test of the validity of methods used to model the interaction of a given polymer molecule with its neighbors. Temporary-junction network models appear to be capable of explaining observed recoveries. Elastic recovery cannot be explained by single-molecule-in-a-mean-field theories which involve no calculation of the effect of the single molecule on the mean field. ii) A Gaussian network theory equation for the change of volume with elongation for a cross-linked elastomer is generalized in order to allow the bulk compliance to depend on elongation. iii) It is proved that two classes of flow history, namely shear-free and shear, are constitutively independent in the sense that, for a given viscoelastic liquid of unknown constitutive equation, the behavior in one class cannot be predicted from rheological measurements (however extensive) made solely in the other class.Dedicated to Prof. Dr. J. Meissner on the occasion of his 60th birthday.  相似文献   

10.
Summary The viscoelastic behavior of polymeric systems based upon the Leonov model has been examined for (i) stress growth and relaxation with intermittent shear flow, (ii) stress relaxation after a step in the shear strain and (iii) elastic recovery after shear flow. A large number of modes have been conveniently incorporated through the determination of the model parameters from conventional rheological data by using an effective least-square procedure. With a sufficient number of modes, the predictions are in very good agreement with corresponding experiments in literature, including the recent data for cases (i) and (ii) obtained by optical methods.The present theory agrees also with the Lodge-Meissner relation ( 11 22)/ 12 = 0 in a step-shear experiment. In general, the Leonov model leads to results which, in these test cases, are comparable to those from Wagner's theory. It is, however, considerably less difficult to apply, thus offering the possibility of analysing flow problems of practical interest.With 16 figures and 1 table  相似文献   

11.
By means of a cone and plate rheometer the relaxation of the shear stress and the first normal stress difference in polymer liquids upon cessation of a constant shear rate were examined. The experiments were conducted mostly in a high shear rate region of relevance for the processing of these materials. The relaxation behavior at these shear rates can only be measured accurately under extremely precise specifications of the rheometer. To determine under which conditions the integral normal thrust is a convenient measure for the relaxing local first normal stress difference the radial distribution of the pressure in the shear gap was measured. The shape of relaxation of both the shear stress and the first normal stress difference could be closely approximated for the entire measured shear rate and time range by a two parameter statistical function. In the range of measured shear rates, one of the parameters, the standard deviationS, is equal for the shear and the normal stress, and is independent of the shear rate within the limit of experimental error. The second parameter, the mean relaxation timet 50, of the shear stress andt 50, of the first normal stress difference, can be calculated approximately from the viscosity function and only a single relaxation experiment.  相似文献   

12.
Suspensions consisting of particles of colloidal dimensions have been reported to form connected structures. When attractive forces act between particles in suspension they may flocculate and, depending on particle concentration, shear history and other parameters, flocs may build-up in a three-dimensional network which spans the suspension sample. In this paper a floc network model is introduced to interpret the elastic behavior of flocculated suspensions at small deformations. Elastic percolation concepts are used to explain the variation of the elastic modulus with concentration. Data taken from the suspension rheology literature, and new results with suspensions of magnetic -Fe2O3 and non-magnetic -Fe2O3 particles in mineral oil are interpreted with the model proposed.Non-zero elastic modulus appeared at threshold particle concentrations of about 0.7 vol.% and 0.4 vol.% of the magnetic and non-magnetic suspensions, respectively. The difference is attributed to the denser flocs formed by magnetic suspensions. The volume fraction of particles in the flocs was estimated from the threshold particle concentration by transforming this concentration into a critical volume concentration of flocs, and identifying this critical concentration with the theoretical percolation threshold of three-dimensional networks of different coordination numbers. The results obtained indicate that the flocs are low-density structures, in agreement with cryo-scanning electron micrographs. Above the critical concentration the dynamic elastic modulus G was found to follow a scaling law of the type G ( f - f c ) f , where f is the volume fraction of flocs in suspension, and f c is its threshold value. For magnetic suspensions the exponent f was found to rise from a low value of about 1.0 to a value of 2.26 as particle concentration was increased. For the non-magnetic a similar change in f was observed; f changed from 0.95 to 3.6. Two other flocculated suspension systems taken from the literature showed a similar change in exponent. This suggests the possibility of a change in the mechanism of stress transport in the suspension as concentration increases, i.e., from a floc-floc bond-bending force mechanism to a rigidity percolation mechanism.  相似文献   

13.
The stability of the laminar helical flow of pseudoplastic liquids has been investigated with an indirect method consisting in the measurement of the rate of mass transfer at the surface of the inner rotating cylinder. The experiments have been carried out for different values of the geometric parameter = R 1/R 2 (the radius ratio) in the range of small values of the Reynolds number,Re < 200. Water solutions of CMC and MC have been used as pseudoplastic liquids obeying the power law model. The results have been correlated with the Taylor and Reynolds numbers defined with the aid of the mean viscosity value. The stability limit of the Couette flow is described by a functional dependence of the modified critical Taylor number (including geometric factor) on the flow indexn. This dependence, general for pseudoplastic liquids obeying the power law model, is close to the previous theoretical predictions and displays destabilizing influence of pseudoplasticity on the rotational motion. Beyond the initial range of the Reynolds numbers values (Re>20), the stability of the helical flow is not affected considerably by the pseudoplastic properties of liquids. In the range of the monotonic stabilization of the helical flow the stability limit is described by a general dependence of the modified Taylor number on the Reynolds number. The dependence is general for pseudoplastic as well as Newtonian liquids.Nomenclature C i concentration of reaction ions, kmol/m3 - d = R 2R 1 gap width, m - F M () Meksyn's geometric factor (Eq. (1)) - F 0 Faraday constant, C/kmol - i l density of limit current, A/m3 - k c mass transfer coefficient, m/s - n flow index - R 1,R 2 inner, outer radius of the gap, m - Re = V m ·2d·/µ m Reynolds number - Ta c = c ·d3/2·R 1 1/2 ·/µ m Taylor number - Z i number of electrons involved in electrochemical reaction - = R 1/R 2 radius ratio - µ apparent viscosity (local), Ns/m2 - µ m mean apparent viscosity value (Eq. (3)), Ns/m2 - µ i apparent viscosity value at a surface of the inner cylinder, Ns/m2 - density, kg/m3 - c angular velocity of the inner cylinder (critical value), 1/s  相似文献   

14.
J. Kunnen 《Rheologica Acta》1988,27(6):575-579
The Fulcher-Tammann-Hesse-Vogel equation, ln = A + B/(T – T 0 ), is shown to be equivalent to the general viscosity-composition relationship, ln r =k f /(1 – f ), for binary mixtures. The Cailletet-Mathias law of the Rectilinear Diameter is rearranged to represent a density mixture formula for two components. Temperature-independent viscosities and densities can then be calculated for dense, solid cluster fractions, dispersed in a low-density, low-viscosity non-clustered continuous phase. The cluster fraction decreases with temperature. The value ofT 0 is shown to be related to the liquid- or solid-like behavior of the clusters. For liquids with a vapor pressure < 1 mm Hg at the melting point, the calculated cluster volume fraction suggests close packing of clusters, ranging in shape from monodisperse spheres to polydisperse non-spherical particles. Examples are given for molecular liquids, molten metals, and molten salts. The size of the clusters is estimated from the heat of evaporation.  相似文献   

15.
Dynamic material functions of polymeric systems are calculated via a defect-diffusion model. The random motion of defects is modelled by a fractaltime stochastic process. It is shown that the dynamic functions of polymeric solutions can be approximated by the defect-diffusion process of the mixed type. The relaxation modulus of Kohlrausch type is obtained for a fractal-time defect-diffusion process, and it is shown that this modulus is capable of portraying the dynamic behavior of typical viscoelastic solutions.The Fourier transforms of the Kohlrausch function are calculated to obtain and. A three-parameter model for and is compared with the previous calculations. Experimental measurements for five polymer solutions are compared with model predictions. D rate of deformation tensor - G(t) mechanical relaxation modulus - H relaxation spectrum - I(t) flux of defects - P n (s) probability of finding a walker ats aftern-steps - P generating function ofP n (s) - s(t) fraction of surviving defects - , () gamma function (incomplete) - 0 zero shear viscosity - * () complex viscosity - frequency - t n n-th moment - F[] Fourier transform - f * (u) Laplace transform off(t) - , components of * - G f, f * fractional model - G 3, 3 * three parameter model - complex conjugate ofz - material time derivative ofD  相似文献   

16.
The stability of a laminar helical flow of pseudoplastic liquids in an annular gap with a rotating inner cylinder is investigated theoretically. The analysis is carried out under the assumption of a torroidal form of the secondary flow (torroidal Taylor vortices) for the narrow gap geometry. The power law model has been applied to describe the pseudoplasticity of liquids. The problem of the stability has been formulated with the aid of the method of small disturbances, and solved using the Galerkin method. In order to describe the stability limit the Reynolds and Taylor numbers defined with the aid of the mean viscosity value have been introduced. It has been found that pseudoplasticity has a considerably destabilizing influence on the Couette motion as well as on the helical flow in the initial range of the Reynolds number values (Re<30). A decrease of the flow index value,n, is accompanied by a decrease of the critical value of the Taylor number. This destabilizing effect of pseudoplasticity vanishes in the range of the larger values of the Reynolds number. In the rangeRe>30, the stability limit of the flow of pseudoplastic liquids can be described by a general dependence of the critical valueTa c onRe, which is consistent with results obtained for the case of Newtonian fluids. a frequency number (Eq. (27)), 1/s - b wave number (Eq. (27)), 1/m - B = M/N parameter - d = R 2R 1 gap width, m - f(y, B, k) function of viscosity distribution (Eq. (7)) - f 0 (x) function of viscosity distribution (narrow gap Eq. (35)) - F(x) = V(x)/V m dimensionless distribution of axial flow velocity - G(x) = U(x) i dimensionless distribution of angular flow velocity - K consistency coefficient, N sn/m2 - M = (P/L)R 2 parameter of the stress field (Eq. (1)), N/m2 - M 0 torque per unit length, N - n flow index - N = M 0/(2R 2 2 ) parameter of the stress field (Eq. (1)), N/m2 - p = 1/2n–1/2 parameter - pressure disturbance amplitude, N/m2 - p pressure disturbance, N/m2 - (P/L) pressure drop per unit length of the gap, N/m2 - r radial coordinate, m - r m location of the maximum value of the axial velocity, m - R 1,R 2 inner, outer radius of the annulus, m - Re = V m 2d/ m Reynolds number - S = (P/L · d/N) parameteer of the stress field (narrow gap) - t time, s - Ta = i d 3/2 R 1 1/2 / m Taylor number - U tangential velocity, m/s - U i tangential velocity at the surface of the inner cylinder, m/s - V axial velocity, m/s - V m mean axial velocity, m/s - V disturbance vector of velocity field, m/s - amplitude of theV k -disturbance, m/s - X, Y, Z functions in Eqs. (36–38) - y = r/R 2 dimensionless radial coordinate - x = (r—(R 1+R 2)/2)d radial coordinate (narrow gap) - L 1 L 4 linear operators in Eqs. (36–38) - = ad/V m dimensionless frequency number - = b·d dimensionless wave number - component of the rate of strain tensor, 1/s - component of the rate of strain tensor corresponding to the disturbance, 1/s - = R 1/R 2 radius ratio - apparent viscosity, Ns/m2 - 0 apparent viscosity in the main flow, Ns/m2 - µ disturbance of the apparent viscosity, Ns/m2 - µ m mean apparent viscosity, Ns/m2 - density, kg/m3 - ij component of the stress tensor, N/m2 - angular velocity, rad/s - i angular velocity of the inner cylinder, rad/s  相似文献   

17.
Filled polymeric liquids often exhibit apparent yielding and shear thinning in steady shear flow. Yielding results from non-hydrodynamic particle—particle interactions, while shear thinning results from the non-Newtonian behavior of the polymer melt. A simple equation, based on the linear superposition of two relaxation mechanisms, is proposed to describe the viscosity of filled polymer melts over a wide range of shear rates and filler volume fraction.The viscosity is written as the sum of two generalized Newtonian liquid models. The resulting equation can describe a wide range of shear-thinning viscosity curves, and a hierarchy of equations is obtained by simplifying the general case. Some of the parameters in the equation can be related to the properties of the unfilled liquid and the solid volume fraction. One adjustable parameter, a yield stress, is necessary to describe the viscosity at low rates where non-hydrodynamic particle—particle interaction dominate. At high shear rates, where particle—particle interactions are dominated by interparticle hydrodynamics, no adjustable parameters are necessary. A single equation describes both the high and low shear rate regimes. Predictions of the equation closely fit published viscosity data of filled polymer melts. n power-law index - n 1,n 2 power-law index of first (second) term - shear rate - steady shear viscosity - 0 zero-shear rate viscosity - 0, 1, 0, 2 zero-shear rate viscosity of first (second) term - time constant - 1, 2 time constant of first (second) term - µ r relative viscosity of filled Newtonian liquid - 0 yield stress - ø solid volume fraction - ø m maximum solid volume fraction  相似文献   

18.
A series of polydisperse SAN (styrene-co-acrylonitrile) random copolymers was studied by means of oscillatory rheometry in the rubbery plateau zone and in the terminal zone. The plateau modulus, the Newtonian viscosity, and the critical frequencies for the onset of non-Newtonian behavior were extracted from the experimental data. All these viscoelastic quantities consistently indicate that the tail of molecular weights below approximately M e (the entanglement spacing) acts as a solvent for the rest of the polymer with M>M e .  相似文献   

19.
The flow of a viscoelastic liquid driven by the steadily rotating bottom cover of a cylindrical cup is investigated. The flow field and the shape of the free surface are determined at the lowest significant orders of the regular domain perturbation in terms of the angular velocity of the bottom cap. The meridional field superposed on a primary azimuthal field shows a structure of multiple cells. The velocity field and the shape of the free surface are strongly effected by the cylinder aspect ratio and the elasticity of the liquid. The use of this flow configuration as a free surface rheometer to determine the first two Rivlin-Ericksen constants is shown to be promising.Nomenclature R, ,Z Coordinates in the physical domain D - , , Coordinates in the rest stateD 0 - r, ,z Dimensionless coordinates in the rest stateD 0 - Angular velocity - Zero shear viscosity - Surface tension coefficient - Density - Dimensionless surface tension parameter - 1, 2 The first two Rivlin-Ericksen constants - Stream function - Dimensionless second order meridional stream function - * Dimensionless second normal stress function - 2 Dimensionless sum of the first and second normal stress functions - N 1,N 2 The first and second normal stress functions - n Unit normal vector - D Stretching tensor - A n nth order Rivlin-Ericksen tensor - S Extra-stress - u Velocity field - U Dimensionless second order meridional velocity field - V Dimensionless first order azimuthal velocity field - p Pressure - Modified pressure field - P Dimensionless second order pressure field - J Mean curvature - a Cylinder radius - d Liquid depth at rest - D Dimensionless liquid depth at rest - h Free surface height - H Dimensionless free surface height at the second order  相似文献   

20.
To investigate the viscoelastic behavior of fluid dispersions under steady shear flow conditions, an apparatus for parallel superimposed oscillations has been constructed which consists of a rotating cup containing the liquid under investigation in which a torsional pendulum is immersed. By measuring the resonance frequency and bandwidth of the resonator in both liquid and in air, the frequency and steady-shear-rate-dependent complex shear modulus can be obtained. By exchange of the resonator lumps it is possible to use the instrument at four different frequencies: 85, 284, 740, and 2440 Hz while the steady shear rate can be varied from 1 to 55 s–1. After treatment of the theoretical background, design, and measuring procedure, the calibration with a number of Newtonian liquids is described and the accuracy of the instrument is discussed.Notation a radius of the lump - A geometrical constant - b inner radius of the sample holder - c constant - C 1, C 2 apparatus constants - D damping of the pendulum - e x , e y , e z Cartesian basis - e r , e , e z orthonormal cylindrical basis - E geometrical constant - E t , 0 E t , t relative strain tensor - f function of shear rate - F t relative deformation tensor - G (t) memory function - G * complex shear modulus - G Re(G * ) - G Im(G * ) - h distance between plates - H * transfer function - , functional - i imaginary unit: i 2= – 1 - I moment of inertia - J exc excitation current - J 0 amplitude of J exc - k * = kik complex wave number - K torsional constant - K fourth order tensor - l length of the lump - L mutual inductance - M dr driving torque - M liq torque exerted by the liquid - 0 M liq, liq steady state and dynamic part of Mliq - n power of the shear rate - p isotropic pressure - Q quality factor - r radial position - R,R 0, R c Re(Z *, Z 0 * , Z c * ) - s time - t, t time - T temperature - T, 0 T, stress tensor - u velocity - U lock-in output - 0 velocity - V det detector output voltage - V sig, V cr signal and cross-talk part of V det - x Cartesian coordinate - X , X 0, X c Im(Z *, Z 0 * , Z c * ) - y Cartesian coordinate - z Cartesian coordinate, axial position  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号