首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability constants of 1 : 1 complexes of ammonium ion with 18-crown-6 in water and aqueous dioxane (dioxane weight fraction 0.2, 0.4, 0.6, and 0.8) in the range 283-318 K were determined electrometrically, and the thermodynamic parameters of the complexation were calculated. The stability of the complexes is determined by the enthalpy factor. The contributions from the Gibbs energy of solvation of NH4 + ion, 18-crown-6·NH4 + complex, and free 18-crown-6 to stabilization of the complex with increasing content of dioxane in the mixed solvent were estimated. The thermodynamics of complexation of ammonium, sodium, and potassium ions with 18-crown-6 in aqueous-organic solvents, such as water-2-propanol, water-acetone, and water-dioxane, were compared considering the effects of reactant solvation. The variations of the conformational component of the Gibbs energy of solvation of 18-crown-6 and the parameters of selective solvation of the reactants were evaluated. The influence of the dielectric permittivity and donor-acceptor properties of mixed aqueous-organic solvents on the Gibbs energy of complexation and solvation of the cations and 18-crown-6 was subjected to correlation analysis.  相似文献   

2.
The equilibrium constants of complex formation of benzo-15-crown-5 ether with sodium ion have been determined by molar conductance at various molar ratios of benzo- 15-crown-5 ether and sodium iodide in mixtures of water with acetonitrile at 298.15 K. The thermodynamic quantities of complex formation of benzo-15-crown-5 ether with sodium cation are calculated. The enthalpy of solvation of benzo-15-crown-5 ether and sodium ion complex is discussed together with solvation enthalpies of the cation and ligand. The contribution of the benzene ring to the thermodynamic properties of complex formation and to the enthalpy of solvation of the crown ether/ Na+ complex in the mixtures of water with acetonitrile are analyzed and discussed.  相似文献   

3.
New complex compound, diaqua(18-crown-6)sodium E-2-phenylethenylphosphonate 18-crown-6 E-2-phenylethenylphosphonic acid, [Na(18-crown-6)(H2O)2]+·HO 3 ? PCH=CHPh·18-crown-6·H2O3PCH=CHPh, was obtained and its crystal and molecular structures were studied by the X-ray structural analysis. In this structure the complex cation [Na(18-crown-6)(H2O)2]+ is of guest-host type. The coordination polyhedron of its Na+ cation is a slightly screwed hexagonal bipyramid with the base consisting of all 6 O atoms of 18-crown-6 ligand and with two opposite apexes at two O atoms of two ligand water molecules. In the studied crystal structure the alternating complex cations and 18-crown-6 molecules as well as the molecules of acid and its anion HO 3 ? PCH=CHPh form by means of hydrogen bonds the infinite chains of two different types.  相似文献   

4.
Stability constants K ML for the 1:1 complexes of Na+, K+, Rb+, and Cs+ with dibenzo-24-crown-8 (DB24C8) and dibenzo-18-crown-6 (DB18C6) in water have been determined by a capillary electrophoretic technique at 25°C. The K ML sequence is Na+ < K+ < Rb+ < Cs+ for DB24C8 and Na+ < K+ > Rb+ > Cs+ for DB18C6. Compared with DB18C6, DB24C8 exhibits higher selectivity for K+ over Na+, but lower selectivity for K+, Rb+, and Cs+. To evaluate the solvation of the complexes in water, their transfer activity coefficients sH2O between polar nonaqueous solvents and water have been calculated. The sH2O values provide the following information: interactions with water of the metal ions and of the crown-ether oxygens are greatly reduced upon complexation and the complexes undergo hydrophobic hydration in water; the character of each alkali metal ion in solvation is more effectively masked by DB24C8 than by DB18C6, because of the larger and more flexible ring structure of DB24C8. Solvent effects on the complex stabilities are discussed on the basis of the sH2O values.  相似文献   

5.
The complex formation of Ag+ with polyether 18-crown-6 (18C6) and their solvation have been studied using calorimetric and potentiometric methods in H2O-EtOH solvents in wide range of ethanol concentration. The standard enthalpies of dissolution AgNO3, AgClO4 and 18C6 in aqueous-ethanol solvents are obtained. The stability of a complex [Ag18C6]+ grows with increasing the EtOH content a solvent. Using the method based on the thermodynamic characteristics of solvation of metal-ion, ligand and complex-ion the interpretation of the results has been given. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The thermodynamic functions of complex formation of benzo-15-crown-5 ether (B15C5) and sodium cation (Na+) in the mixtures of propan-1-ol (PrOH) with water at 298.15 K have been calculated from experimental measurements. The equilibrium constants of B15C5/Na+ complex formation have been determined by conductivity measurements. The enthalpic effect of complex formation has been measured by a calorimetric method. The complexes are enthalpy stabilized but entropy destabilized in the PrOH–H2O mixtures. The effects of preferential solvation of B15C5 by molecules of the organic solvent, solvation of the sodium cation, as well as the acid-base properties of propan-1-ol–water mixtures on the complex formation processes are discussed.  相似文献   

7.
The thermodynamic functions of complex formation of benzo-15-crown-5 ether (B15C5) and sodium cation (Na+) in acetone–water mixtures at 298.15 K have been calculated. The equilibrium constants of B15C5/Na+ complex formation have been determined by conductivity measurements. The enthalpic effect of complex formation has been measured by the calorimetric method. The complexes are enthalpy-stabilized but entropy-destabilized in acetone–water mixtures. The effects of hydrophobic hydration, preferential solvation of B15C5 by a molecule of water and acetone, respectively and the solvation of Na+ on the complex formation processes have been discussed. The calculated thermodynamic functions of B15C5/Na+ complex formation and the effect of benzene ring on the complex formation have been compared with analogous data obtained in dimethylsulfoxide–water mixtures. The effect of carbonyl atom replacement in acetone molecule by sulphur atom (DMSO molecule) on the thermodynamic functions of complex formation has been analysed.  相似文献   

8.
Formation constants for complexes of dibenzo-21-crown-7, dibenzo-24-crown-8 and dibenzo-27-crown-9 with the Na+, Cs+ and Tl+ ions have been determined by multinuclear NMR measurements in several nonaqueous solvents. The measurements of the cesium complexes were carried out at different temperatures and the enthalpy and entropy of complexation were determined from the temperature dependence of the formation constants.The stabilities of these complexes in solvents of low to medium donicity, —nitromethane, acetonitrile, acetone, methanol, and propylene carbonate, vary in the order Tl+>Cs+>Na+. Depending on the relative sizes of the cation and of the ligand cavity, either a three-dimensional wrap-around complex or a two-dimensional crown complex are formed. For the cesium complexes, the values of H c o and S c o are definitely solvent-dependent and in all cases the complexes are enthalpy stabilized but entropy destabilized. A compensating effect is observed in the variation of the enthalpy and entropy of complexation so that the overall influence of the above solvents on the stability of the complexes is rather limited.  相似文献   

9.
《Analytical letters》2012,45(17):1937-1946
Abstract

The complexes formed by the Na+, K+, Rb+, Ca2+, UO2+ 2, and Ag+ cations with the macrocyclic polyethers 18-crown-6, benzo-15-crown-5, and dicyclohexy1-18-crown-6 are investigated. The stability constants of these complexes have been determined potentiometrically in (90% vol.) ethanol-water solutions at 25[ddot]C and an ionic strength μ= 0.1 (achieved with tetrabuty lammonium perchlorate). The stablity of the investigated complexes was interpreted in terms of “caging” the metal cation into the cavity of the macrocyclic ligand, an effect which depends on the ratio of the diameter of the complexed cation over the diameter of the cavity of the complexing ligand.  相似文献   

10.
Two crystalline host-guest complexes are synthesized and studied using X-ray diffraction analysis: (18-crown-6)sodium tribromide [Na(18-crown-6)]+ · Br 3 ? (I) and (18-crown-6)potassium tribromide (with an admixture of bromodiiodide) [K(18-crown-6)]+ · (Br0.25I2.75)? (II). The structures of compound I (space group P21/n, a = 8.957 Å, b = 8.288 Å, c = 14.054 Å, β = 104.80°, Z = 2) and compound II (space group Cc, a = 8.417 Å, b = 15.147 Å, c = 17.445 Å, β = 99.01°, Z = 4) are solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.098 (I) and 0.036 (II) for all 2311 (I) and 2678 (II) independent measured reflections on a CAD-4 automated diffractometer (λMoK α). Similar crystalline complexes I and II exist as infinite chains of alternating complex cations and trihalide anions linked to each other through weak Na-Br or K-I coordination bonds. In [Na(18-crown-6)]+ and [K(18-crown-6)]+ complex cations, the Na+ or K+ cation (coordination number is eight) is located in the center of the cavity of the 18-crown-6 ligand and coordinated by the six O atoms and two terminal Br or I atoms of two trihalide anions lying on opposite sides of the rms plane of the crown ligand.  相似文献   

11.
The influence of the composition of acetonitrile-dimethylsulfoxide solvents on the stability of silver(I) complexes with 18-crown-6 ether was studied potentiometrically. An increase in the concentration of dimethylsulfoxide decreased the stability of the coordination compound. It was shown on the basis of the thermodynamic characteristics of solvation of the reagents that a determining factor of complex formation equilibrium shifts was the solvation effect of the Ag+ ion. An equation was suggested for predicting the stability of silver(I) coordination compounds with crown ethers and pyridine-type ligands in binary mixtures of aprotic solvents from changes in the solvation state of the central ion.  相似文献   

12.
B3LYP/6-311G level of theory is used to study the interactions between aza-, diaza-, and triaza- 12-crown-4 ligands as host molecules and Na+ ion as a guest species. Minimum energy structures, complexes binding energies, basis set superposition errors, and various thermodynamic parameters of free ligands, ion, and complexes have been calculated based on the proposed level of theory. A simple thermodynamic cycle with and without different acetonitrile cluster sizes inside the cavity of Na+, has been used to calculate the stability constants of aza-12-crown-4 complex. All solvation free energy estimations have been done with using SMD model. Results show that with introducing more acetonitrile molecules in the cavity of guest species, the absolute deviation is reduced. In addition, a good linear correlation between experimental complex formation constants and binding energies of complexes has been obtained. Calculated results, which are in agreement with the experimental data, predict that the interaction energy of triaza- is more than diaza-12-crown-4, which in turn is greater than aza-12-crown-4 with Na+ ion.  相似文献   

13.
Résumé The interactions of Li+, Na+, K+, Rb+, and Cs+ with the double-crown calix, calix[4]arene-bis-crown-6, have been studied in methanol, acetonitrile, and propylene carbonate at 25°C using precise conductivity measurements. For Li+ and Na+ in solutions containing this calix[4]arene, only 1:1 cation:ligand complexes are formed which permit the determination of the thermodynamic complexation formation constants,K f. The conductivity data strongly suggest that 2:1 cationcalixarene complexes form with K+, Rb+, and Cs+. The existence of 2:1 complexes was experimentally confirmed for the potassium systems by a mass spectroscopic method.  相似文献   

14.
Heats of solution of 1,4,7,10,13,16-hexaoxacyclooctadecane (18-crown-6) in acetonitrile, 1,2-dichloroethane, N,N-dimethylformamide, dimethyl sulfoxide, nitromethane, propylene carbonate, pyridine and water were measured at 25 °C and the enthalpies of the transfer of 18-crown-6 from waterto the aprotic solvents were derived. The thermodynamic quantities, G1°, H1° and T S1°, for the formation of the[M(18-crown-6)]+ (M+ = Na+, K+, Rb+, Cs+, NH4 +) complexeswere determined by titration calorimetry in dimethyl sulfoxide containing0.1 mol dm-3 (C2H5)4NClO4 as a constant ionic medium at 25 °C. These thermodynamic quantities suggest that the complexationof 18-crown-6 with the alkali-metal ions mainly reflects the different solvationof 18-crown-6 and also the different degree of solvent structure.  相似文献   

15.
The stability constants and the partial molal volume and isentropic partial molal compressibility changes of complex formation between cations and crown ethers in water at 25°C are presented. The cations involved are Na+, K+, Rb+, Cs+, Ca2+, and Ba2+, and the crown ethers are 12-crown-4, 15-crown-5, and 18-crown-6. Values of V of complex formation have been discussed in terms of two simple models, one based on the scaled particle theory, and the others on the Drude-Nernst continuum model. The results indicate that the charge of the potassium cation in 18-crown-6 is especially well screened from the water. On this basis hydration numbers of complexed cations have been calculated. This shows that the size of the cation compared to the crown ether hole is important for the contacts between complexed cations and water.  相似文献   

16.
Chromene derivatives bearing oxymethyl-12-crown-4 (1), -15-crown-5 (2), -18-crown-6 (3) ether moieties, and non-cyclic analogue (4) were synthesized, and their metal ion binding properties and photochromism were examined. NMR titration with alkali metal ions revealed that 1 formed a 1:2 complex (metal ion: ligand) with Na+, while Li+ afforded a 1:1 complex of 1. In cases of K+ and Rb+, the complexes were a mixture of 1:1 and 1:2 complexes, but the formation of 1:1 complex was observed again with Cs+. Under UV irradiation, however, the complex stoichiometry of 1 with all alkali metal ions was 1:1. As a comparison of NMR spectra between the Li+ and Na+ complexes of 1 indicated considerable upfield shift for the chromene moiety of the Na+ complex, π-π stacking of the chromene moiety seems to induce formation of the 1:2 complex. These results indicate that the chromene moiety is not only to show photochromism but also to induce aggregation to form the 1:2 complex resulted in switching of the complex stoichiometry by UV irradiation. The formation of 1:2 complex appeared only with 1 because flexibility of the crown moieties for 2 and 3 interfered the formation of 1:2 complex. Studies on photochromism in the presence of a metal ion demonstrated that the chromene derivatives bearing crown ether moieties show ion-responsive photochromism depending on the metal ion binding ability of their crown ether moieties.  相似文献   

17.
Two complexes with similar compositions are synthesized: (18-crown-6)(nitrato-O,O′)potassium (I) and (18-crown-6)(nitrato-O,O′)potassium(0.91)silver(0.09) (II). Their isomorphic orthorhombic crystals (space group P212121, Z = 4) are studied by X-ray diffraction analysis. Structure I (a = 8.553 Å, b = 11.967 Å, c = 17.871 Å) and structure II (a = 8.540 Å, b = 11.956 Å, c = 17.867 Å) are solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.044 (I) and 0.055 (II) for all 2385 (I) and 2379 (II) measured independent reflections. Complex molecules [K(NO3)(18-crown-6)] in structure I and [K0.91Ag0.09(NO3)(18-crown-6)] in compound II are of the host-guest type and rather similar in structure. Their 18-crown-6 and NO 3 ? ligands are disordered over two orientations. The K+ cation in complex I and the mixed cation (K0.91Ag0.09)+ in complex II reside in the cavity of the disordered 18-crown-6 ligand and is coordinated by its six O atoms and by two disordered O atoms of the NO 3 ? . ligand. The coordination polyhedron (CN = 8) of the K+ cation in complex I and that of (K0.91Ag0.09)+ cation in complex II is a distorted hexagonal pyramid with a base of six O atoms of the 18-crown-6 ligand and a split vertex at two O atoms of the NO 3 ? ligand.  相似文献   

18.

Abstract  

By using quantum mechanical calculations, the most probable structures of free dibenzo-18-crown-6 ligand and the cationic complex species of Cs+ both with one and with two dibenzo-18-crown-6 ligands were derived. In these two complexes, the “central” cation Cs+ is bound by strong bond interactions to the corresponding ethereal oxygen atoms of the parent crown ligand.  相似文献   

19.
From extraction experiments with 22Na tracer, the exchange extraction constants corresponding to the NH4 +(aq) + NaL+ (nb)NH4L+(nb) + Na+ (aq) equilibrium taking place in the two-phase water-nitrobenzene system (L = 18-crown-6, dicyclohexyl-18-crown-6, dibenzo-18-crown-6 and dibenzo-24-crown-8; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Furthermore, the stability constants of the NH4L+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the order dibenzo-24-crown-8 (DB24C8) < dibenzo-18-crown-6 (DB18C6) < dicyclohexyl-18-crown-6 (DCH18C6) < 18-crown-6 (18C6).  相似文献   

20.
Conductivity data are used to determine thermodynamic complex formation constants for cases in which both the initial electrolyte and the complexed electrolyte form ion pairs. Using the method described in the text, the complex formation constants of Li+, Na+ and K+ with the crown ether 18-crown-6 and of Li+ with the ligand triphenylphosphine oxide in propylene carbonate have been evaluated from conductance data. The complexation of AgBr in propylene carbonate solutions of n-etrabutylammonium bromide has also been studied by the measurement of molar conductivities. The results of these studies indicate that ion pairing should not be neglected, even in high permittivity solvents such as propylene carbonate, and that the ion pair association constants correlate well with structural studies on cation-crown ether molecular conformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号