首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Commercial ultrafiltration membranes have proliferated globally for water treatment. However, their pore sizes are too large to sieve gases. Conjugated microporous polymers (CMPs) feature well-developed microporosity yet are difficult to be fabricated into membranes. Herein, we report a strategy to prepare molecular-sieving membranes by partitioning the mesoscopic channels in water ultrafiltration membrane (PSU) into ultra-micropores by space-confined polymerization of multi-functionalized rigid building units. Nine CMP@PSU membranes were obtained, and their separation performance for H2/CO2, H2/N2, and H2/CH4 pairs surpass the Robeson upper bound and rival against the best of those reported membranes. Furthermore, highly crosslinked skeletons inside the channels result in the structural robustness and transfer into the excellent aging resistance of the CMP@PSU. This strategy may shed light on the design and fabrication of high-performance polymeric gas separation membranes.  相似文献   

2.
Membrane technologies that do not rely on heat for industrial gas separation would lower global energy cost. While polymeric, inorganic, and mixed‐matrix separation membranes have been rapidly developed, the bottleneck is balancing the processability, selectivity, and permeability. Reported here is a softness adjustment of rigid networks (SARs) strategy to produce flexible, stand‐alone, and molecular‐sieving membranes by electropolymerization. Here, 14 membranes were rationally designed and synthesized and their gas separation ability and mechanical performance were studied. The separation performance of the membranes for H2/CO2, H2/N2, and H2/CH4 can exceed the Robeson upper bound, among which, H2/CO2 separation selectivity reaches 50 with 626 Barrer of H2 permeability. The long‐term and chemical stability tests demonstrate their potential for industrial applications. This simple, scalable, and cost‐effective strategy holds promise for the design other polymers for key energy‐intensive separations.  相似文献   

3.
Oriented and penetrating molecular sieving membranes display enhanced separation performance. A polyimide (PI) solution containing highly dispersed ZIF‐7(III) sheets in CHCl3 was deposited on a glass side and subjected to flat‐scraping with a membrane fabricator. In this way we developed a novel oriented and penetrating ZIF‐7@PI mixed matrix membrane (MMM) with 50 wt. % ZIF‐7 loading. Because the height of the ZIF‐7 sheets (5 μm) is higher than the film thickness, every ZIF‐7 sheet penetrates both surfaces of the polyimide film. Since the ZIF‐7 channels are the dominant pathway for gas permeation, the ZIF‐7@PI MMM displays a high molecular sieve performance for the separation of H2 (0.29 nm) from larger gas molecules. At 100 °C and 2 bar, the mixture separation factors of H2/CO2 and H2/CH4 are 91.5 and 128.4, with a high H2 permeance of about 3.0×10?7 mol m?2 s?1 Pa?1, which is promising for hydrogen separation by molecular sieving.  相似文献   

4.
Separation methods based on 2D interlayer galleries are currently gaining widespread attention. The potential of such galleries as high‐performance gas‐separation membranes is however still rarely explored. Besides, it is well recognized that gas permeance and separation factor are often inversely correlated in membrane‐based gas separation. Therefore, breaking this trade‐off becomes highly desirable. Here, the gas‐separation performance of a 2D laminated membrane was improved by its partial self‐conversion to metal–organic frameworks. A ZIF‐8‐ZnAl‐NO3 layered double hydroxide (LDH) composite membrane was thus successfully prepared in one step by partial conversion of the ZnAl‐NO3 LDH membrane, ultimately leading to a remarkably enhanced H2/CH4 separation factor and H2 permeance.  相似文献   

5.
Vapor phase ligand treatment (VPLT) of 2‐aminobenzimidazole (2abIm) for 2‐methylimidazole (2mIm) in ZIF‐8 membranes prepared by two different methods (LIPS: ligand induced permselectivation and RTD: rapid thermal deposition) results in a notable shift of the molecular level cut‐off to smaller molecules establishing selectivity improvements from ca. 1.8 to 5 for O2/N2; 2.2 to 32 for CO2/CH4; 2.4 to 24 for CO2/N2; 4.8 to 140 for H2/CH4 and 5.2 to 126 for H2/N2. Stable (based on a one‐week test) oxygen‐selective air separation performance at ambient temperature, 7 bar(a) feed, and 1 bar(a) sweep‐free permeate with a mixture separation factor of 4.5 and oxygen flux of 2.6×10?3 mol m?2 s?1 is established. LIPS and RTD membranes exhibit fast and gradual evolution upon a 2abIm‐VPLT, respectively, reflecting differences in their thickness and microstructure. Functional reversibility is demonstrated by showing that the original permeation properties of the VPLT‐LIPS membranes can be recovered upon 2mIm‐VPLT.  相似文献   

6.
This study reports 6FDA:BPDA‐DAM polyimide‐derived hollow fiber carbon molecular‐sieve (CMS) membranes for hydrogen and ethylene separation. Since H2/C2H4 selectivity is the lowest among H2/(C1‐C3) hydrocarbons, an optimized CMS fiber for this gas pair is useful for removing hydrogen from all‐cracked gas mixtures. A process we term hyperaging provides highly selective CMS fiber membranes by tuning CMS ultramicropores to favor H2 over larger molecules to give a H2/C2H4 selectivity of over 250. Hyperaging conditions and a hyperaging mechanism are discussed in terms of an expedited physical aging process, which is largely controlled by the hyperaging temperature. For the specific CMS material considered here, a hyperaging temperature beyond 90 °C but less than 250 °C works best. Hyperaging also stabilizes CMS materials against physical aging and stabilizes the performance of H2 separation over extended periods. This work opens a door in the development of CMS materials for the separation of small molecules from large molecules.  相似文献   

7.
Metal–organic framework (MOF) nanosheets could serve as ideal building blocks of molecular sieve membranes owing to their structural diversity and minimized mass‐transfer barrier. To date, discovery of appropriate MOF nanosheets and facile fabrication of high performance MOF nanosheet‐based membranes remain as great challenges. A modified soft‐physical exfoliation method was used to disintegrate a lamellar amphiprotic MOF into nanosheets with a high aspect ratio. Consequently sub‐10 nm‐thick ultrathin membranes were successfully prepared, and these demonstrated a remarkable H2/CO2 separation performance, with a separation factor of up to 166 and H2 permeance of up to 8×10−7 mol m−2 s−1 Pa−1 at elevated testing temperatures owing to a well‐defined size‐exclusion effect. This nanosheet‐based membrane holds great promise as the next generation of ultrapermeable gas separation membrane.  相似文献   

8.
Graphene oxide (GO) is a promising two-dimensional building block for fabricating high-performance gas separation membranes. Whereas the tortuous transport pathway may increase the transport distance and lead to a low gas permeation rate, introducing spacers into GO laminates is an effective strategy to enlarge the interlayer channel for enhanced gas permeance. Herein, we propose to intercalate CO2-philic MIL-101(Cr) metal-organic framework nanocrystals into the GO laminates to construct a 2D/3D hybrid structure for gas separation. The interlayer channels were partially opened up to accelerate gas permeation. Meanwhile, the intrinsic pores of MIL-101 provided additional transport pathways, and the affinity of MIL-101 to CO2 molecules resulted in higher H2/CO2 diffusion selectivity, leading to a simultaneous enhancement in gas permeance and separation selectivity. The MIL-101(Cr)/GO membrane with optimal structures exhibited outstanding and stable mixed-gas separation performance with H2 permeance of 67.5 GPU and H2/CO2 selectivity of 30.3 during the 120-h continuous test, demonstrating its potential in H2 purification application.  相似文献   

9.
Ordered and flexible porous frameworks with solution processability are highly desirable to fabricate continuous and large‐scale membranes for the efficient gas separation. Herein, the first microporous hydrogen‐bonded organic framework (HOF) membrane has been fabricated by an optimized solution‐processing technique. The framework exhibits the superior stability because of the abundant hydrogen bonds and strong π–π interactions. Thanks to the flexible HOF structure, the membrane possesses the unprecedented pressure‐responsive H2/N2 separation performance. Furthermore, the scratched membrane can be healed by the treatment of solvent vapor, achieving the recovery of separation performance.  相似文献   

10.
Low‐molecular‐weight poly(ethylene glycol) (PEG) is deliberately incorporated into synthesized swellable poly(ethylene oxide) (PEO) membranes via a facile post‐treatment strategy. The membranes exhibit both larger fractional free volume (FFV) and a higher content of CO2‐philic building units, resulting in significant increments in both CO2 permeability and CO2/H2 selectivity. The separation performance correlates nicely with the microstructure of the membranes. This study may provide useful insights in the formation and mass transport behavior of highly efficient polymeric membranes applicable to clean energy purification and CO2 capture, and possibly bridge the material‐induced technology gap between academia and industry.

  相似文献   


11.
Membrane separation of CO2 from natural gas, biogas, synthesis gas, and flu gas is a simple and energy‐efficient alternative to other separation techniques. But results for CO2‐selective permeance have always been achieved by randomly oriented and thick zeolite membranes. Thin, oriented membranes have great potential to realize high‐flux and high‐selectivity separation of mixtures at low energy cost. We now report a facile method for preparing silica MFI membranes in fluoride media on a graded alumina support. In the resulting membrane straight channels are uniformly vertically aligned and the membrane has a thickness of 0.5 μm. The membrane showed a separation selectivity of 109 for CO2/H2 mixtures and a CO2 permeance of 51×10?7 mol m?2 s?1 Pa?1 at ?35 °C, making it promising for practical CO2 separation from mixtures.  相似文献   

12.
Metal–organic framework (MOF) glasses are promising candidates for membrane fabrication due to their significant porosity, the ease of processing, and most notably, the potential to eliminate the grain boundary that is unavoidable for polycrystalline MOF membranes. Herein, we developed a ZIF‐62 MOF glass membrane and exploited its intrinsic gas‐separation properties. The MOF glass membrane was fabricated by melt‐quenching treatment of an in situ solvothermally synthesized polycrystalline ZIF‐62 MOF membrane on a porous ceramic alumina support. The molten ZIF‐62 phase penetrated into the nanopores of the support and eliminated the formation of intercrystalline defects in the resultant glass membrane. The molecular sieving ability of the MOF membrane is remarkably enhanced via vitrification. The separation factors of the MOF glass membrane for H2/CH4, CO2/N2 and CO2/CH4 mixtures are 50.7, 34.5, and 36.6, respectively, far exceeding the Robeson upper bounds.  相似文献   

13.
Mixed matrix membranes (MMMs) made from inorganic fillers and polymers is a kind of promising candidate for gas separation. In this work, two‐dimensional MXene nanosheets were synthesized and incorporated into a polyether‐polyamide block copolymer (Pebax) matrix to fabricate MMM for CO2 capture. The physicochemical properties of MXene nanosheets and MXene/Pebax membranes were studied systematically. The introduction of MXene nanosheets provided additional molecular transport channels and meanwhile enhanced the CO2 adsorption capacity, thereby enhancing both the CO2 peremance and CO2/N2 selectivity of Pebax membrane. The optimized MXene/Pebax membrane with a MXene loading of 0.15 wt % displayed a high separation performance with a CO2 permeance of 21.6 GPU and a CO2/N2 selectivity of 72.5, showing potential application in CO2 capture.  相似文献   

14.
Thin membranes (900 nm) were prepared by direct transformation of infiltrated amorphous precursor nanoparticles, impregnated in a graphene oxide (GO) matrix, into hydroxy sodalite (SOD) nanocrystals. The amorphous precursor particles rich in silanols (Si?OH) enhanced the interactions with the GO, thus leading to the formation of highly adhesive and stable SOD/GO membranes via strong bonding. The cross‐linking of SOD nanoparticles with the GO in the membranes promoted both the high gas permeance and enhanced selectivity towards H2 from a mixture containing CO2 and H2O. The SOD/GO membranes are moisture resistance and exhibit steady separation performance (H2 permeance of about 4900 GPU and H2/CO2 selectivity of 56, with no degradation in performance during the test of 50 h) at high temperature (200 °C) under water vapor (4 mol %).  相似文献   

15.
Highly permeable montmorillonite layers bonded and aligned with the chain stretching orientation of polyvinylamineacid are immobilized onto a porous polysulfone substrate to fabricate aligned montmorillonite/polysulfone mixed‐matrix membranes for CO2 separation. High‐speed gas‐transport channels are formed by the aligned interlayer gaps of the modified montmorillonite, through which CO2 transport primarily occurs. High CO2 permeance of about 800 GPU is achieved combined with a high mixed‐gas selectivity for CO2 that is stable over a period of 600 h and independent of the water content in the feed.  相似文献   

16.
ZIF‐8 membrane has the potential for CO2/CH4 separation based on size exclusion. But if traditionally prepared by solvothermal methods, it shows only negligible selectivity due to the linker mobility. Here, ≈500 nm‐thin hybrid ZIF‐7x‐8 membranes with suppressed linker mobility and narrowed window aperture are prepared by a fast current‐driven synthesis (FCDS) within 20 min. The in situ electric field during FCDS allows the formation of stiffened ZIF‐8_Cm as parent skeleton and the mixed‐linker strategy is applied to narrow the aperture size simultaneously. The ZIF‐722‐8 membrane shows significantly sharpened molecular sieving for CO2/CH4 with a separation factor above 25, which soared tenfold compared with other unmodified ZIF‐8 membranes. Additionally, the membrane shows exceptional separation performance for H2/CH4 and CO2/N2, with separation factors of 71 and 20, respectively. After 180 h temperature swing operation, it still maintains the excellent separation performance.  相似文献   

17.
Polysulfone (PS) and polyethersulfone (PES) ultrafiltration membranes were manufactured from a casting solution of the polymer, polyvinylpyrrolidone (PVP) in various solvents [N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide (DMF) and 1‐methyl‐2‐pyrrolidone (NMP)] by immersing the prepared films in different non‐solvents [water, 2‐butanol, mixture of water and 2‐butanol, mixture of water and 2‐propanol (IPA) and mixture of water and 1‐butanol]. The influences of various solvents and non‐solvents on morphology and performance of the prepared membranes were analyzed by scanning electron microscopy (SEM) and separation experiments using milk as the feed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The present work tries to introduce a high‐performance nano‐composite membrane by using polydimethylsiloxane (PDMS) as its main polymer matrix to meet some specific requirements in industrial gas separations. Different nano‐composite membranes were synthesized by incorporating various amounts of nano‐sized silica particles into the PDMS matrix. A uniform dispersion of nano‐particles in the host membranes was obtained. The nano‐composite membranes were characterized morphologically by scanning electron microscopy and atomic force microscopy. Separation properties, permeability, and ideal selectivity of C3H8, CH4, and H2 through the synthesized nano‐composite membranes with different nano‐particle contents (0.5, 1, 1.5, 2, 2.5, and 3 wt%) were investigated at different pressures (2, 3, 4, 5, 6, and 7 atm) and constant temperature (35°C). It was found out that a 2 wt% loading of nano‐particles into the PDMS matrix is optimal to obtain the best separation performance. Afterwards, sorption experiments for the synthesized nano‐composite membranes were carried out, and diffusion coefficients of the gases were calculated based on solution‐diffusion mechanism. Gas permeation and sorption experiments showed an increase in sorption and a decrease in diffusion coefficients of the gases through the nano‐composite membranes by adding nano‐particles into the host polymer matrix. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Concurrent regulation of crystallographic orientation and thickness of zirconium metal–organic framework (Zr-MOF) membranes is challenging but promising for their performance enhancement. In this study, we pioneered the fabrication of uniform triangular-shaped, 40 nm thick UiO-66 nanosheet (NS) seeds by employing an anisotropic etching strategy. Through innovating confined counter-diffusion-assisted epitaxial growth, highly (111)-oriented 165 nm-thick UiO-66 membrane was prepared. The significant reduction in thickness and diffusion barrier in the framework endowed the membrane with unprecedented CO2 permeance (2070 GPU) as well as high CO2/N2 selectivity (35.4), which surpassed the performance limits of state-of-the-art polycrystalline MOF membranes. In addition, highly (111)-oriented 180 nm-thick NH2-UiO-66 membrane showing superb H2/CO2 separation performance with H2 permeance of 1230 GPU and H2/CO2 selectivity of 41.3, was prepared with the above synthetic procedure.  相似文献   

20.
Two new bridged alkoxysilanes, bis(triethoxysilylalkyl)‐N,N′‐oxalylureas (alkyl = methyl or n‐propyl), bearing a highly rigid and polar oxalylurea unit in the bridges, were employed as precursors of bridged silica membranes. The gas and water separation performance of the membranes prepared from the precursors using the sol–gel process was investigated. Interestingly, the membrane properties depended on the alkyl chain length. The membrane containing methylene units (alkyl = methyl) was porous and rather hydrophilic but the other with longer propylene units (alkyl = n‐propyl) was non‐porous and more hydrophobic. High H2/SF6 gas permeance ratios of 3100 and 1700, and NaCl rejections of 89 and 85% for 2000 ppm aqueous NaCl were obtained using the membranes containing methyl and n‐propyl, respectively. The membrane with alkyl = methyl also showed a high CO2/N2 permeance ratio of 20.6 at 50°C. These results indicate the potential applications of the membranes as gas and water separation materials. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号