首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudo-natural-product (NP) design combines natural product fragments to provide unprecedented NP-inspired compounds not accessible by biosynthesis, but endowed with biological relevance. Since the bioactivity of pseudo-NPs may be unprecedented or unexpected, they are best evaluated in target agnostic cell-based assays monitoring entire cellular programs or complex phenotypes. Here, the Cinchona alkaloid scaffold was merged with the indole ring system to synthesize indocinchona alkaloids by Pd-catalyzed annulation. Exploration of indocinchona alkaloid bioactivities in phenotypic assays revealed a novel class of azaindole-containing autophagy inhibitors, the azaquindoles. Subsequent characterization of the most potent compound, azaquindole-1, in the morphological cell painting assay, guided target identification efforts. In contrast to the parent Cinchona alkaloids, azaquindoles selectively inhibit starvation- and rapamycin-induced autophagy by targeting the lipid kinase VPS34.  相似文献   

2.
Bioactive compound design based on natural product (NP) structure may be limited because of partial coverage of NP‐like chemical space and biological target space. These limitations can be overcome by combining NP‐centered strategies with fragment‐based compound design through combination of NP‐derived fragments to afford structurally unprecedented “pseudo‐natural products” (pseudo‐NPs). The design, synthesis, and biological evaluation of a collection of indomorphan pseudo‐NPs that combine biosynthetically unrelated indole‐ and morphan‐alkaloid fragments are described. Indomorphane derivative Glupin was identified as a potent inhibitor of glucose uptake by selectively targeting and upregulating glucose transporters GLUT‐1 and GLUT‐3. Glupin suppresses glycolysis, reduces the levels of glucose‐derived metabolites, and attenuates the growth of various cancer cell lines. Our findings underscore the importance of dual GLUT‐1 and GLUT‐3 inhibition to efficiently suppress tumor cell growth and the cellular rescue mechanism, which counteracts glucose scarcity.  相似文献   

3.
Cinchona alkaloids catalyze the oxa‐Michael cyclization of 4‐(2‐hydroxyphenyl)‐2‐butenoates to benzo‐2,3‐dihydrofuran‐2‐yl acetates and related substrates in up to 99 % yield and 91 % ee (ee=enantiomeric excess). Catalyst and substrate variation studies reveal an important role of the alkaloid hydroxy group in the reaction mechanism, but not in the sense of a hydrogen‐bonding activation of the carbonyl group of the substrate as assumed by the Hiemstra–Wynberg mechanism of bifunctional catalysis. Deuterium labeling at C‐2 of the substrate shows that addition of RO? H to the alkenoate occurs with syn diastereoselectivity of ≥99:1, suggesting a mechanism‐based specificity. A concerted hydrogen‐bond network mechanism is proposed, in which the alkaloid hydroxy group acts as a general acid in the protonation of the α‐carbanionic center of the product enolate. The importance of concerted hydrogen‐bond network mechanisms in organocatalytic reactions is discussed. The relative stereochemistry of protonation is proposed as analytical tool for detecting concerted addition mechanisms, as opposed to ionic 1,4‐additions.  相似文献   

4.
The cinchona alkaloids are a privileged class of natural products and are endowed with diverse bioactivities. However, for compounds with the closely‐related oxazatricyclo[4.4.0.0]decane (“oxazatwistane”) scaffold, which are accessible from cinchonidine and quinidine by means of ring distortion and modification, biological activity has not been identified. We report the synthesis of an oxazatwistane compound collection through employing state‐of‐the‐art C−H functionalization, and metal‐catalyzed cross‐coupling reactions as key late diversity‐generating steps. Exploration of oxazatwistane bioactivity in phenotypic assays monitoring different cellular processes revealed a novel class of autophagy inhibitors termed oxautins, which, in contrast to the guiding natural products, selectively inhibit autophagy by inhibiting both autophagosome biogenesis and autophagosome maturation.  相似文献   

5.
Natural products (NPs) inspire the design and synthesis of novel biologically relevant chemical matter, for instance through biology‐oriented synthesis (BIOS). However, BIOS is limited by the partial coverage of NP‐like chemical space by the guiding NPs. The design and synthesis of “pseudo NPs” overcomes these limitations by combining NP‐inspired strategies with fragment‐based compound design through de novo combination of NP‐derived fragments to unprecedented compound classes not accessible through biosynthesis. We describe the development and biological evaluation of pyrano‐furo‐pyridone (PFP) pseudo NPs, which combine pyridone‐ and dihydropyran NP fragments in three isomeric arrangements. Cheminformatic analysis indicates that the PFPs reside in an area of NP‐like chemical space not covered by existing NPs but rather by drugs and related compounds. Phenotypic profiling in a target‐agnostic “cell painting” assay revealed that PFPs induce formation of reactive oxygen species and are structurally novel inhibitors of mitochondrial complex I.  相似文献   

6.
Natural products (NPs) inspire the design and synthesis of novel biologically relevant chemical matter, for instance through biology‐oriented synthesis (BIOS). However, BIOS is limited by the partial coverage of NP‐like chemical space by the guiding NPs. The design and synthesis of “pseudo NPs” overcomes these limitations by combining NP‐inspired strategies with fragment‐based compound design through de novo combination of NP‐derived fragments to unprecedented compound classes not accessible through biosynthesis. We describe the development and biological evaluation of pyrano‐furo‐pyridone (PFP) pseudo NPs, which combine pyridone‐ and dihydropyran NP fragments in three isomeric arrangements. Cheminformatic analysis indicates that the PFPs reside in an area of NP‐like chemical space not covered by existing NPs but rather by drugs and related compounds. Phenotypic profiling in a target‐agnostic “cell painting” assay revealed that PFPs induce formation of reactive oxygen species and are structurally novel inhibitors of mitochondrial complex I.  相似文献   

7.
Tropane alkaloids are bioactive metabolites with great importance in the pharmaceutical industry and the most important class of natural products found in the Erythroxylum genus. However, these compounds are usually separated by traditional chromatographic techniques, in which the sample is progressively purified in multiple chromatographic steps, resulting in a time‐ and solvent‐consuming procedure. In this work we present the isolation of a novel alkaloid, 6β,7β‐dibenzoyloxytropan‐3α‐ol, together with the two known 3α‐benzoyloxynortropan‐6β‐ol and 3α,6β‐dibenzoyloxytropane alkaloids, directly from the crude alkaloid fraction from the leaves of Erythroxylum subsessile, by using a single run pH‐zone‐refining counter‐current chromatography method. The ethyl acetate/water (1:1, v/v) biphasic solvent system with triethylamine and HCl as retention and eluter agents, respectively, was used to isolate tropane alkaloids for the first time. The structures of the isolated alkaloids were elucidated by spectroscopic methods.  相似文献   

8.
There is a renewed interest in lobelia alkaloids because of their activity on the central nervous system. Lobeline, the most active of them, a nicotinic receptor ligand and neurotransmitter transporter inhibitor, is a candidate pharmacotherapy for metamphetamine abuse. In the present work, high‐performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry in positive ion mode was used for investigating the alkaloid profile in Lobelia inflata L. Chromatographic separations were achieved on a Gemini C6‐phenyl reversed‐phase column providing good peak shape and improved selectivity. Being mostly 2,6‐disubstituted piperidines, lobelia alkaloids presented abundant [M + H]+ ions with typical fragmentation. Identification was possible from a few specific ions, especially those resulting from excision of one of the substituents. Based on fragmentation pattern of lobeline as reference compound, 52 alkaloids were identified in the aqueous methanolic extract of L. inflata in contrast to the previously known some 20. Structural variability of these alkaloids identified arises basically from their substituents which can be phenyl‐2‐ketoethyl‐ or phenyl‐2‐hydroxyethyl units as well as their methyl‐, ethyl‐ or propyl‐ homologues attached in different combinations. Several propyl homologue lobelia alkaloids and five hydroxypiperidine derivatives were found in the plant at the first time. In addition to 8‐O‐esters of 2‐monosubstituted piperidine alkaloids previously reported by us in L. inflata, a 3‐hydroxy‐3‐phenylpropanoic acid ester of hydroxyallosedamine ring‐substituted was also identified as a new natural product. High‐performance liquid chromatography‐electrospray ionization tandem mass spectrometry can be successfully applied to Lobeliacae plant samples in the routine screening for new and known bioactive constituents, quality control of the crude drug, lobelia herba, alkaloid production studies, breeding and chemotaxonomy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Pyrrolizidine alkaloids are highly hepatotoxic natural chemicals that produce irreversible chronic and acute hepatotoxic effects on human beings. Purification of large amounts of pyrrolizidine alkaloids is necessary for toxicity studies. In this study, an efficient method for targeted analysis and purification of pyrrolizidine alkaloid cis/trans isomers from herbal materials was developed for the first time. Targeted analysis of the hepatotoxic pyrrolizidine alkaloids was performed by liquid chromatography with tandem mass spectrometry (precursor ion scan and daughter ion scan), and the purification of pyrrolizidine alkaloids was achieved with a mass‐directed auto purification system. The extraction and preparative liquid chromatography conditions were optimized. The developed method was applied to analysis of Gynura japonica (Thunb.) Juel., a herbal medicine traditionally used for detumescence and relieving pain but is potentially hepatotoxic as it contains pyrrolizidine alkaloids. Twelve pyrrolizidine alkaloids (six cis/trans isomer pairs) were identified with reference compounds or characterized by liquid chromatography with tandem mass spectrometry, and five individual pyrrolizidine alkaloids, including (E)‐seneciphylline, seneciphylline, integerrimine, senecionine, and seneciphyllinine, were prepared from G. japonica roots with high efficiency. The results of this work provide a new technique for the preparation of large amounts of pyrrolizidine alkaloid reference substances, which will also benefit toxicological studies of pyrrolizidine alkaloids and treatments for pyrrolizidine alkaloid‐induced toxicity.  相似文献   

10.
(+)‐N‐formylnorglaucine ( 1 ), an aporphine alkaloid containing a formyl group linked to the heterocyclic nitrogen, was isolated from the leaves of Unonopsis stipitata, an Amazon medicinal plant. The chemical structure was characterized based on 1D‐ and 2D‐NMR spectroscopy and HR‐ESI‐MS. NMR spectra revealed that 1 is composed of two rotamers ( 1a and 1b ) in a ratio of approximately 2:1. In addition, the fragmentation behavior of 1 displayed an unusual fragmentation pattern compared to regular aporphine alkaloids. Thus, this compound is reported for the first time as a natural product in this study.  相似文献   

11.
An efficient synthesis of 6‐oxo‐1,2,3,4,5,7,12,12 b ‐octahydroindolo[2,3‐ α ]quinolizine from 2‐acetylpyridine and phenylhydrazine is described. This derivative of the natural alkaloid desbromoarborescidine A is an important entry point to the sarpagine‐vobasine family of plant alkaloids.  相似文献   

12.
A variety of strained α‐alkylidene‐γ‐lactams were synthesized by palladium(0)‐catalyzed intramolecular C(sp3)?H alkenylation from easily accessible acyclic and monocyclic bromoalkene precursors. These lactams are valuable intermediates for accessing various classes of mono‐ and bicylic alkaloids containing a pyrrolidine ring, as illustrated with the synthesis of an advanced model of the marine natural product plakoridine A and of the indolizidine alkaloid δ‐coniceine.  相似文献   

13.
An unprecedented organocatalytic enantioselective formal synthesis of bromopyrrole alkaloid natural products is reported. An organocatalytic aza-Michael addition using pyrroles as the N-centered nucleophile is utilized as the enantioselective step to construct the nitrogen-substituted stereogenic carbon center in bromopyrrole alkaloids in good yield and excellent enantioselectivity. The aza-Michael product is converted via lactamization using a Staudinger-type reductive cyclization to the key intermediate, which was previously used in the total synthesis of bromopyrrole alkaloid natural products.  相似文献   

14.
Two parallel approaches for preparing diverse and highly symmetrical homohybrids derived from a series of mono‐ and diterpenes, steroids, and alkaloids are reported. Both procedures are based on the mono‐addition of bis(alkynyl) dilithium reagents to natural products having a carbonyl group to produce the corresponding alkynyl derivatives. The Glaser–Hay Cu‐promoted homocoupling of these alkynyl natural product mono‐adducts as well as the Huisgen Cu‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction resulted in the synthesis of steroid‐, terpene‐, and alkaloid‐based homohybrid derivatives incorporating diverse spacers to join the natural product scaffolds. Straightforward entries to novel closed highly symmetrical and complex estrone‐based macrocyclic and cage architectures by means of the Glaser–Eglinton homocoupling and the CuAAC reaction have been devised.  相似文献   

15.
Madangamines are a group of bioactive marine sponge alkaloids, embodying an unprecedented diazapentacyclic skeletal type. The enantioselective total synthesis of madangamine D has been accomplished, and represents the first total synthesis of an alkaloid of the madangamine group. It involves the stereoselective construction of the diazatricyclic ABC core using a phenylglycinol‐derived lactam as the starting enantiomeric scaffold and the subsequent assembly of the peripheral macrocyclic rings. The synthesis provides, for the first time, a pure sample of madangamine D and confirms the absolute configuration of this alkaloid family.  相似文献   

16.
An efficient and refined method for the separation of six aconitine‐type alkaloids from the alkaline prepared “Kusnezoff monkshood root” was established. It is the first study that two new lipo‐alkaloids were successfully isolated from refined sample by pH‐zone‐refining counter‐current chromatography rather than synthetic method. It was of interest that a great deal of lipo‐alkaloids was produced in crude extract from the alkalization of “Kusnezoff monkshood root.” A refined sample method was proposed to enrich two types of alkaloids by liquid–liquid extraction, i.e. lipo‐alkaloids and monoester‐diterpenoid alkaloids. The pH‐zone‐refining counter‐current chromatography was performed with an optimized two‐phase solvent system composed of n‐hexane‐ethyl acetate–methanol–water (3:5:4:5, v/v), where upper organic phase was added to 3 mmol/L triethylamine as a retainer and lower aqueous mobile phase was added to 3 mmol/L hydrochloric acid as an eluter. As a result, six aconitum alkaloids, including two lipo‐alkaloids (8‐lino‐14‐benzoylaconine, 8‐pal‐14‐benzoylaconine), three monoester‐diterpenoid alkaloids (14‐benzoylmesaconine, 14‐benzoylaconine, beyzoyldeoxyaconine), and one aconine alkaloid (neoline) were acquired from the plant at the same time. The anti‐inflammatory activities of the two new lipo‐alkaloids were compared to the six alkaloids in vitro, in cyclo‐oxygen‐ase‐2 inhibition assays. The separation mechanism of six alkaloids by pH‐zone‐refining counter‐current chromatography was illustrated.  相似文献   

17.
Gram‐negative bacteria represent a challenging task for antibacterial drug discovery owing to their impermeable cell membrane and restricted uptake of small molecules. We herein describe the synthesis of natural‐product‐derived epoxycyclohexenones and explore their antibiotic activity against several pathogenic bacteria. A compound with activity against Salmonella Typhimurium was identified, and the target enzymes were unraveled by quantitative chemical proteomics. Importantly, two protein hits were linked to bacterial stress response, and corresponding assays revealed an elevated susceptibility to reactive oxygen species upon compound treatment. The consolidated inhibition of these targets provides a rationale for antibacterial activity and highlights epoxycyclohexenones as natural product scaffolds with suitable properties for killing Gram‐negative Salmonella.  相似文献   

18.
An indoxyl‐based strategy for the synthesis of indolines and indolenines via unprecedented aza‐pinacol and aza‐semipinacol rearrangements was developed. This method provides direct access to the core structures of several classes of indole alkaloids. The synthetic utility was demonstrated by the divergent synthesis of an array of functionalized polycyclic structures from a common intermediate and the formal total synthesis of the indoline natural product minfiensine. The reversed reactivity of indoxyl as a building block compared to that of indole offers a conceptually distinct disconnection strategy for indoline‐ and indolenine‐containing heterocycles and natural products.  相似文献   

19.
Two independent total syntheses of the Aristotelia alkaloid (−)‐serratenone ((−)‐ 1 ) are disclosed, one starting with (−)‐α‐pinene, the other one with (S)‐α‐terpineol. These correlations led to a revision of the originally proposed absolute configuration of the natural product. In the course of systematic investigations of the behavior of the indole alkaloids (+)‐makomakine ((+)‐ 18 ) and (−)‐hobartine ((−)‐ 22 ) towards oxidizing reagents, it was found that treatment with I2 leads to no less than five different products. Depending on the exact reaction conditions, each of them can be obtained as the major component in yields between 40 and 60%. One of these compounds was shown to be identical with the natural product (+)‐11,12‐didehydromakonin‐10‐one ((+)‐ 28 ).  相似文献   

20.
A method for the determination of Cinchona extract (whose main components are the alkaloids cinchonine, cinchonidine, quinidine, and quinine) in beverages by liquid chromatography was developed. A beverage with an alcohol content of more than 10% was loaded onto an OASIS HLB solid-phase extraction cartridge, after it was adjusted to pH 10 with 28% ammonium hydroxide. Other beverages were centrifuged at 4000 rpm for 5 min, and the supernatant was loaded onto the cartridge. The cartridge was washed with water followed by 15% methanol, and the Cinchona alkaloids were eluted with methanol. The Cinchona alkaloids in the eluate were chromatographed on an L-column ODS (4.6 mm id x 150 mm) with methanol and 20 mmol/L potassium dihydrogen phosphate (3 + 7) as the mobile phase. Cinchona alkaloids were monitored with an ultraviolet (UV) detector at 230 nm, and with a fluorescence detector at 405 nm for cinchonine and cinchonidine and 450 nm for quinidine and quinine (excitation at 235 nm). The calibration curves for Cinchona alkaloids with the UV detector showed good linearity in the range of 2-400 microg/mL. The detection limit of each Cinchona alkaloid, taken to be the concentration at which the absorption spectrum could be identified, was 2 microg/mL. The recovery of Cinchona alkaloids added at a level of 100 microg/g to various kinds of beverages was 87.6-96.5%, and the coefficients of variation were less than 3.3%. A number of beverage samples, some labeled to contain bitter substances, were analyzed by the proposed method. Quinine was detected in 2 samples of carbonated beverage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号