首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The NiII‐mediated tautomerization of the N‐heterocyclic hydrosilylcarbene L2Si(H)(CH2)NHC 1 , where L2=CH(C?CH2)(CMe)(NAr)2, Ar=2,6‐iPr2C6H3; NHC=3,4,5‐trimethylimidazol‐2‐yliden‐6‐yl, leads to the first N‐heterocyclic silylene (NHSi)–carbene (NHC) chelate ligand in the dibromo nickel(II) complex [L1Si:(CH2)(NHC)NiBr2] 2 (L1=CH(MeC?NAr)2). Reduction of 2 with KC8 in the presence of PMe3 as an auxiliary ligand afforded, depending on the reaction time, the N‐heterocyclic silyl–NHC bromo NiII complex [L2Si(CH2)NHCNiBr(PMe3)] 3 and the unique Ni0 complex [η2(Si‐H){L2Si(H)(CH2)NHC}Ni(PMe3)2] 4 featuring an agostic Si? H→Ni bonding interaction. When 1,2‐bis(dimethylphosphino)ethane (DMPE) was employed as an exogenous ligand, the first NHSi–NHC chelate‐ligand‐stabilized Ni0 complex [L1Si:(CH2)NHCNi(dmpe)] 5 could be isolated. Moreover, the dicarbonyl Ni0 complex 6 , [L1Si:(CH2)NHCNi(CO)2], is easily accessible by the reduction of 2 with K(BHEt3) under a CO atmosphere. The complexes were spectroscopically and structurally characterized. Furthermore, complex 2 can serve as an efficient precatalyst for Kumada–Corriu‐type cross‐coupling reactions.  相似文献   

2.
Highly selective cross‐hydroalkenylations of endocyclic 1,3‐dienes at the least substituted site with α‐olefins were achieved with a set of neutral (NHC)NiIIH(OTf) catalysts and cationic NiII catalysts with a novel NHC ligand. Under heteroatom assistance, skipped dienes were obtained in good yields, often from equal amounts of the two substrates and at a catalyst loading of 2–5 mol %. Rare 4,3‐product selectivity (i.e., with the H atom at C4 and the alkenyl group at C3 of the diene) was observed, which is different from the selectivity of known dimerizations of α‐olefins with both acyclic Co and Fe systems. The influence of the various substituents on the NHC, 1,3‐diene, and α‐olefin on the chemo‐, regio‐, and diastereoselectivity was studied. High levels of chirality transfer were observed with chiral cyclohexadiene derivatives.  相似文献   

3.
Cross-dimerization of a methylenecyclopropane ( 1 ) and an unactivated alkene ( 2 ) with typical hydroalkenylation reactivity was observed for the first time by using a [NHC-Ni(allyl)]BArF catalyst (NHC=N-heterocyclic carbene). Results show that the C−C cleavage of 1 did not involve a Ni0 oxidative addition, which was crucial in former systems. Thus the method reported here emerges as a complementary method for attaining highly chemo- and regioselective synthesis of methylenecyclopentanes ( 3 ) with broad scope. An efficient NHC/NiII-catalyzed rearrangement of 1 leads to the convergent synthesis of 3 in the presence of 2 .  相似文献   

4.
A cross‐hydroalkenylation/rearrangement cascade (HARC), using a cyclopropene and alkyne as substrate pairs, was achieved for the first time by using new [(NHC)Ni(allyl)]BArF catalysts (NHC=N‐heterocyclic carbenes). By controlling the (NHC)NiIIH relative insertion reactivity with cyclopropene and alkyne, a broad scope of cyclopentadienes was obtained with highly selectively. The structural features of the new (NHC)NiII catalyst were important for the success of the reaction. The mild reaction conditions employed may serve as an entry for exploring (NHC)NiII‐assisted vinylcyclopropane rearrangement reactivity.  相似文献   

5.
This study discusses the synthesis of two new 2‐hydroxyethyl substituted N‐heterocyclic carbene (NHC) precursors. The NHC precursors were prepared from 1‐(alkyl/aryl)benzimidazole and alkyl halides. They were characterized using 1H NMR, 13C NMR, FT‐IR, UV–Vis spectroscopy, and elemental analysis techniques. Molecular and crystal structures of 1 and 2 were determined using the single‐crystal X‐ray diffraction method. Crystal structure of the compounds features NHC precursors and chloride anions. Additionally in 2 , the asymmetric unit has a water molecule, which forms a tetrameric chloride‐hydrate assembly with the chloride anion. The chloride anions play an important role in the stabilization of crystal structures to form a two‐dimensional supramolecular architecture. The 3D Hirshfeld surface and the associated 2D fingerprint plots were also drawn to gain insights into the behavior of the interactions in the compounds.  相似文献   

6.
Facile oxygenation of the acyclic amido‐chlorosilylene bis(N‐heterocyclic carbene) Ni0 complex [{N(Dipp)(SiMe3)ClSi:→Ni(NHC)2] ( 1 ; Dipp=2,6‐iPr2C6H4; N‐heterocyclic carbene=C[(iPr)NC(Me)]2) with N2O furnishes the first Si‐metalated iminosilane, [DippN=Si(OSiMe3)Ni(Cl)(NHC)2] ( 3 ), in a rearrangement cascade. Markedly, the formation of 3 proceeds via the silanone (Si=O)–Ni π‐complex 2 as the initial product, which was predicted by DFT calculations and observed spectroscopically. The Si=O and Si=N moieties in 2 and 3 , respectively, show remarkable hydroboration reactivity towards H−B bonds of boranes, in the former case corroborating the proposed formation of a (Si=O)–Ni π‐complex at low temperature.  相似文献   

7.
A novel NHC–Pd complex of 1,3‐bis (4‐ethoxycarbonylphenyl) imidazolium chloride has been synthesized and characterized by 1H NMR, 13C NMR, IR and X‐ray single‐crystal diffraction studies. TG analysis shows that the NHC‐Pd complex is stable under 208 °C. The catalytic activities have been explored for the synthesis of axially chiral N‐(2′‐methoxy‐1,1′‐binaphthalen‐2‐yl) benzophenone hydrazone. The result indicates that the novel NHC‐Pd complex can achieve better catalytic activity than the Pd‐phosphine catalysts in the synthesis of axially chiral N‐(2′‐methoxy‐1,1′‐binaphthalen‐2‐yl) benzophenone hydrazone.  相似文献   

8.
A general methodology for the α‐arylation of ketones using a nickel catalyst has been developed. The new well‐defined [Ni(IPr*)(cin)Cl] ( 1 c ) pre‐catalyst showed great efficiency for this transformation, allowing the coupling of a wide range of ketones, including acetophenone derivatives, with various functionalised aryl chlorides. This cinnamyl‐based Ni–N‐heterocyclic carbene (NHC) complex has demonstrated a different behaviour to previously reported NHC‐Ni catalysts. Preliminary mechanistic studies suggest a Ni0/NiII catalytic cycle to be at play.  相似文献   

9.
Evaluation of the acidity of proton‐responsive ligands such as protic N‐heterocyclic carbenes (NHCs) bearing an NH‐wingtip provides a key to understanding the metal–ligand cooperation in enzymatic and artificial catalysis. Here, we design a CNN pincer‐type ruthenium complex 2 bearing protic NHC and isoelectronic pyrazole units in a symmetrical skeleton, to compare their acidities and electron‐donating abilities. The synthesis is achieved by direct C?H metalation of 2‐(imidazol‐1‐yl)‐6‐(pyrazol‐3‐yl)pyridine with [RuCl2(PPh3)3]. 15N‐Labeling experiments confirm that deprotonation of 2 occurs first at the pyrazole side, indicating clearly that the protic pyrazole is more acidic than the NHC group. The electrochemical measurements as well as derivatization to carbonyl complexes demonstrate that the protic NHC is more electron‐donating than pyrazole in both protonated and deprotonated forms.  相似文献   

10.
The reaction of zerovalent nickel compounds with white phosphorus (P4) is a barely explored route to binary nickel phosphide clusters. Here, we show that coordinatively and electronically unsaturated N‐heterocyclic carbene (NHC) nickel(0) complexes afford unusual cluster compounds with P1, P3, P5 and P8 units. Using [Ni(IMes)2] [IMes=1,3‐bis(2,4,6‐trimethylphenyl)imidazolin‐2‐ylidene], electron‐deficient Ni3P4 and Ni3P6 clusters have been isolated, which can be described as superhypercloso and hypercloso clusters according to the Wade–Mingos rules. Use of the bulkier NHC complexes [Ni(IPr)2] or [(IPr)Ni(η6‐toluene)] [IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene] affords a closo‐Ni3P8 cluster. Inverse‐sandwich complexes [(NHC)2Ni2P5] (NHC=IMes, IPr) with an aromatic cyclo‐P5? ligand were identified as additional products.  相似文献   

11.
The reaction of (μ‐Cl)2Ni2(NHC)2 (NHC=1,3‐bis(2,6‐diisopropylphenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ylidene (IPr) or 1,3‐bis(2,6‐diisopropylphenyl)imidazolidin‐2‐ylidene (SIPr)) with either one equivalent of sodium cyclopentadienyl (NaCp) or lithium indenyl (LiInd) results in the formation of diamagnetic NHC supported NiI dimers of the form (μ‐Cp)(μ‐Cl)Ni2(NHC)2 (NHC=IPr ( 1 a ) or SIPr ( 1 b ); Cp=C5H5) or (μ‐Ind)(μ‐Cl)Ni2(NHC)2 (NHC=IPr ( 2 a ) or SIPr ( 2 b ); Ind=C7H9), which contain bridging Cp and indenyl ligands. The corresponding reaction between two equivalents of NaCp or LiInd and (μ‐Cl)2Ni2(NHC)2 (NHC=IPr or SIPr) generates unusual 17 valence electron NiI monomers of the form (η5‐Cp)Ni(NHC) (NHC=IPr ( 3 a ) or SIPr ( 3 b )) or (η5‐Ind)Ni(NHC) (NHC=IPr ( 4 a ) or SIPr ( 4 b )), which have nonlinear geometries. A combination of DFT calculations and NBO analysis suggests that the NiI monomers are more strongly stabilized by the Cp ligand than by the indenyl ligand, which is consistent with experimental results. These calculations also show that the monomers have a lone unpaired‐single‐electron in their valence shell, which is the reason for the nonlinear structures. At room temperature the Cp bridged dimer (μ‐Cp)(μ‐Cl)Ni2(NHC)2 undergoes homolytic cleavage of the Ni?Ni bond and is in equilibrium with (η5‐Cp)Ni(NHC) and (μ‐Cl)2Ni2(NHC)2. There is no evidence that this equilibrium occurs for (μ‐Ind)(μ‐Cl)Ni2(NHC)2. DFT calculations suggest that a thermally accessible triplet state facilitates the homolytic dissociation of the Cp bridged dimers, whereas for bridging indenyl species this excited triplet state is significantly higher in energy. In stoichiometric reactions, the NiI monomers (η5‐Cp)Ni(NHC) or (η5‐Ind)Ni(NHC) undergo both oxidative and reductive processes with mild reagents. Furthermore, they are rare examples of active NiI precatalysts for the Suzuki–Miyaura reaction. Complexes 1 a , 2 b , 3 a , 4 a and 4 b have been characterized by X‐ray crystallography.  相似文献   

12.
In contrast to cyclic π‐conjugated hydrocarbons, the coordination chemistry of inorganic heterocycles is less developed. Dicarbondiphosphides stabilized by N‐heterocyclic carbenes (NHCs) NHC→C2P2←NHC ( 1 a , b ) (NHC=IPr or SIPr) contain a four‐membered C2P2 ring with an aromatic 6π‐electron configuration. These heterocycles coordinate to a variety of complex fragments with metals from groups 6, 9, and 10, namely [M0(CO)3] (M=Cr, Mo), [CoI(CO)2]+, or [NiIIBr2], through an η4‐coordination mode, leading to complexes 2 a , b , 3 a , b , 5 a , b , and 6 a , b , respectively. These complexes were characterized by X‐ray diffraction methods using single crystals, IR spectroscopy, and DFT calculations. In combination these methods indicate that 1 a , b behave as exceptionally strong 6π‐electron donors.  相似文献   

13.
A Ni0‐NCN pincer complex featuring a six‐membered N‐heterocyclic carbene (NHC) central platform and amidine pendant arms was synthesized by deprotonation of its NiII precursor. It retained chloride in the square‐planar coordination sphere of nickel and was expected to be highly susceptible to oxidative addition reactions. The Ni0 complex rapidly activated ammonia at room temperature, in a ligand‐assisted process where the carbene carbon atom played the unprecedented role of proton acceptor. For the first time, the coordinated (ammine) and activated (amido) species were observed together in solution, in a solvent‐dependent equilibrium. A structural analysis of the Ni complexes provided insight into the highly unusual, non‐innocent behavior of the NHC ligand.  相似文献   

14.
The new N‐heterocyclic carbene (NHC) precursors 4, ‐dicyano‐1, ‐dimesityl‐ ( 9 ) and 4, 5‐dicyano‐1, 3‐dineopentyl‐2‐(pentafluorophenyl)imidazoline ( 14 ) were synthesized. The structure of 9 could be determined by X‐ray crystallography. With the 2‐pentafluorophenyl‐substituted imidazolines 9 and 14 , the [AgCl(NHC)], [RhCl(COD)(NHC)], and [RhCl(CO)2(NHC)] complexes [NHC = 4, 5‐dicyano‐1, 3‐dimesitylimidazol‐2‐ylidene ( 3 ) and 4, 5‐dicyano‐1, 3‐dineopentylimidazol‐2‐ylidene ( 4 )] were obtained. Crystal structures of [AgCl( 3 )] ( 15 ), [RhCl(COD)( 3 )] ( 17 ), [RhCl(COD)( 4 )] ( 18 ), and [RhCl(CO)2( 3 )] ( 19 ) were solved and with the crystal data of 19 , the percent buried volume ( %Vbur) of 31.8(±0.1) % was determined for NHC 3 . Infrared spectra of the imidazolines 9 and 14 and of the complexes 15 – 20 were recorded and the CO stretching frequencies of complexes 19 and 20 were used to determine the Tolman electronic parameters of the newly obtained NHCs 3 (TEP: 2060 cm–1) and 4 (TEP: 2061 cm–1), thus proving that 1, 3‐substitution of maleonitrile‐NHCs does not have a significant effect for the high π‐acceptor strength of these carbenes.  相似文献   

15.
A series of unsymmetrically substituted N‐heterocyclic carbene (NHC) precursors ( 1a , 1b , 1c , 1d , 1e ) were synthesized from the reaction of N‐phenylbenzimidazole with various alkyl halides. These compounds were used to synthesize NHC–silver(I) complexes ( 2a , 2b , 2c , 2d , 2e ). The five new 1‐phenyl‐3‐alkylbenzimidazolium salts ( 1a , 1b , 1c , 1d , 1e ) and their NHC–silver complexes ( 2a , 2b , 2c , 2d , 2e ) were characterized by the 1H NMR, 13C NMR and FT‐IR spectroscopic methods and elemental analysis techniques. Also, the two NHC–silver complexes 2b and 2c were characterized by single‐crystal X‐ray crystallography, which confirmed the linear C―Ag―Cl arrangements. The antibacterial activities of the NHC precursor and NHC–silver complexes were tested against three Gram‐positive bacterial strains (Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus) and three Gram‐negative bacterial strains (Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) using the microdilution broth method. The NHC–silver complexes showed higher antibacterial activity than the NHC precursors. In addition, silver complexes 2a , 2b , 2c , 2d showed high antibacterial activity against the Gram‐positive bacteria L. monocytogenes and S. aureus compared to the standard, tetracycline. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Deprotonation of the MnI NHC‐phosphine complex fac‐[MnBr(CO)32P,C‐Ph2PCH2NHC)] ( 2 ) under a H2 atmosphere readily gives the hydride fac‐[MnH(CO)32P,C‐Ph2PCH2NHC)] ( 3 ) via the intermediacy of the highly reactive 18‐e NHC‐phosphinomethanide complex fac‐[Mn(CO)33P,C,C‐Ph2PCHNHC)] ( 6 a ). DFT calculations revealed that the preferred reaction mechanism involves the unsaturated 16‐e mangana‐substituted phosphonium ylide complex fac‐[Mn(CO)32P,C‐Ph2P=CHNHC)] ( 6 b ) as key intermediate able to activate H2 via a non‐classical mode of metal‐ligand cooperation implying a formal λ5‐P–λ3‐P phosphorus valence change. Complex 2 is shown to be one of the most efficient pre‐catalysts for ketone hydrogenation in the MnI series reported to date (TON up to 6200).  相似文献   

17.
A nickel/NHC system for regioselective oxidative annulation by double C?H bond activation and concomitant alkyne insertion is described. The catalytic reaction requires a bidentate directing group, such as an 8‐aminoquinoline, embedded in the substrate. Various 5,6,7,8‐tetrasubstituted‐N‐(quinolin‐8‐yl)‐1‐naphthamides can be prepared as well as phenanthrene and benzo[h]quinoline amide derivatives. Diarylalkynes, dialkylalkynes, and arylalkylalkynes can be used in the system. A Ni0/NiII catalytic cycle is proposed as the main catalytic cycle. The alkyne plays a double role as a two‐component coupling partner and as a hydrogen acceptor.  相似文献   

18.
The phenylimidorhenium(V) complexes [Re(NPh)X3(PPh3)2] (X = Cl, Br) react with the N‐heterocyclic carbene (NHC) 1,3‐diethyl‐4,5‐dimethylimidazole‐2‐ylidene (LEt) under formation of the stable rhenium(V) complex cations [Re(NPh)X(LEt)4]2+ (X = Cl, Br), which can be isolated as their chloride or [PF6]? salts. The compounds are remarkably stable against air, moisture and ligand exchange. The hydroxo species [Re(NPh)(OH)(LEt)4]2+ is formed when moist solvents are used during the synthesis. The rhenium atoms in all three complexes are coordinated in a distorted octahedral fashion with the four NHC ligands in equatorial planes of the molecules. The Re–C(carbene) bond lengths between 2.171(8) and 2.221(3) Å indicate mainly σ‐bonding between the NHC ligand and the electron deficient d2 metal atoms. Attempts to prepare analogous phenylimido complexes from [Re(NPh)Cl3(PPh3)2] and 1,3‐diisopropyl‐4,5‐dimethylimidazole‐2‐ylidene (Li?Pr) led to a cleavage of the rhenium‐nitrogen multiple bond and the formation of the dioxo complex [ReO2(Li?Pr)4]+.  相似文献   

19.
A general regioselective rhodium‐catalyzed head‐to‐tail dimerization of terminal alkynes is presented. The presence of a pyridine ligand (py) in a Rh–N‐heterocyclic‐carbene (NHC) catalytic system not only dramatically switches the chemoselectivity from alkyne cyclotrimerization to dimerization but also enhances the catalytic activity. Several intermediates have been detected in the catalytic process, including the π‐alkyne‐coordinated RhI species [RhCl(NHC)(η2‐HC?CCH2Ph)(py)] ( 3 ) and [RhCl(NHC){η2‐C(tBu)?C(E)CH?CHtBu}(py)] ( 4 ) and the RhIII–hydride–alkynyl species [RhClH{? C?CSi(Me)3}(IPr)(py)2] ( 5 ). Computational DFT studies reveal an operational mechanism consisting of sequential alkyne C? H oxidative addition, alkyne insertion, and reductive elimination. A 2,1‐hydrometalation of the alkyne is the more favorable pathway in accordance with a head‐to‐tail selectivity.  相似文献   

20.
Die Reaktion von [Cp′′′Co(η4‐P4)] ( 1 ) (Cp′′′=1,2,4‐tBu3C5H2) mit MeNHC (MeNHC=1,3,4,5‐tetramethylimidazol‐2‐ylidene) führt über eine NHC‐induzierte Phosphorkationen‐Abstraktion zum Ringkontraktionsprodukt [(MeNHC)2P][Cp′′′Co(η3‐P3)] ( 2 ), welches das erste Beispiel eines anionischen CoP3‐Komplexes repräsentiert. Solche von NHCs induzierten Ringkontraktionsreaktionen lassen sich ebenfalls auf Tripeldecker‐Sandwich‐Komplexe anwenden. So werden die Komplexe [(Cp*Mo)2(μ,η6:6‐E6)] ( 3 a , 3 b ) (Cp*=C5Me5; E=P, As) zu den Komplexen [(MeNHC)2E][(Cp*M)2(μ,η3:3‐E3)(μ,η2:2‐E2)] ( 4 a , 4 b ) transformiert, wobei 4 b das erste strukturell charakterisierte Beispiel eines NHC‐substituierten AsI‐Kations darstellt. Darüber hinaus führt die Reaktion des Vanadium‐Komplexes [(Cp*V)2(μ,η6:6‐P6)] ( 5 ) mit MeNHC zur Bildung der neuartigen Komplexe [(MeNHC)2P][(Cp*V)2(μ,η6:6‐P6)] ( 6 ), [(MeNHC)2P][(Cp*V)2(μ,η5:5‐P5)] ( 7 ) bzw. [(Cp*V)2(μ,η3:3‐P3)(μ,η1:1‐P{MeNHC})] ( 8 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号