首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prion-like transcellular spreading of tau in Alzheimer's Disease (AD) is mediated by tau binding to cell surface heparan sulfate (HS). However, the structural determinants for tau–HS interaction are not well understood. Microarray and SPR assays of structurally defined HS oligosaccharides show that a rare 3-O-sulfation (3-O-S) of HS significantly enhances tau binding. In Hs3st1−/− (HS 3-O-sulfotransferase-1 knockout) cells, reduced 3-O-S levels of HS diminished both cell surface binding and internalization of tau. In a cell culture, the addition of a 3-O-S HS 12-mer reduced both tau cell surface binding and cellular uptake. NMR titrations mapped 3-O-S binding sites to the microtubule binding repeat 2 (R2) and proline-rich region 2 (PRR2) of tau. Tau is only the seventh protein currently known to recognize HS 3-O-sulfation. Our work demonstrates that this rare 3-O-sulfation enhances tau–HS binding and likely the transcellular spread of tau, providing a novel target for disease-modifying treatment of AD and other tauopathies.  相似文献   

2.
Apolipoprotein E (ApoE)’s ϵ4 alle is the most important genetic risk factor for late onset Alzheimer's Disease (AD). Cell-surface heparan sulfate (HS) is a cofactor for ApoE/LRP1 interaction and the prion-like spread of tau pathology between cells. 3-O-sulfo (3-O-S) modification of HS has been linked to AD through its interaction with tau, and enhanced levels of 3-O-sulfated HS and 3-O-sulfotransferases in the AD brain. In this study, we characterized ApoE/HS interactions in wildtype ApoE3, AD-linked ApoE4, and AD-protective ApoE2 and ApoE3-Christchurch. Glycan microarray and SPR assays revealed that all ApoE isoforms recognized 3-O-S. NMR titration localized ApoE/3-O-S binding to the vicinity of the canonical HS binding motif. In cells, the knockout of HS3ST1-a major 3-O sulfotransferase-reduced cell surface binding and uptake of ApoE. 3-O-S is thus recognized by both tau and ApoE, suggesting that the interplay between 3-O-sulfated HS, tau and ApoE isoforms may modulate AD risk.  相似文献   

3.
Heparan sulfates (HS) are a class of sulfated polysaccharides that function as dynamic biological regulators of the functions of diverse proteins. The structural basis of these interactions, however, remains elusive, and chemical synthesis of defined structures represents a challenging but powerful approach for unravelling the structure–activity relationships of their complex sulfation patterns. HS has been shown to function as an inhibitor of the β‐site cleaving enzyme β‐secretase (BACE1), a protease responsible for generating the toxic Aβ peptides that accumulate in Alzheimer’s disease (AD), with 6‐O‐sulfation identified as a key requirement. Here, we demonstrate a novel generic synthetic approach to HS oligosaccharides applied to production of a library of 16 hexa‐ to dodecasaccharides targeted at BACE1 inhibition. Screening of this library provided new insights into structure–activity relationships for optimal BACE1 inhibition, and yielded a number of potent non‐anticoagulant BACE1 inhibitors with potential for development as leads for treatment of AD through lowering of Aβ peptide levels.  相似文献   

4.
Heparin (HP) and heparan sulfate (HS) play important roles in many biological events. Increasing evidence has shown that the biological functions of HP and HS can be critically dependent upon their precise structures, including the position of the iduronic acids and sulfation patterns. However, unraveling the HP code has been extremely challenging due to the enormous structural variations. To overcome this hurdle, we investigated the possibility of assembling a library of HP/HS oligosaccharides using a preactivation‐based, one‐pot glycosylation method. A major challenge in HP/HS oligosaccharide synthesis is stereoselectivity in the formation of the cis‐1,4‐linkages between glucosamine and the uronic acid. Through screening, suitable protective groups were identified on the matching glycosyl donor and acceptor, leading to stereospecific formation of both the cis‐1,4‐ and trans‐1,4‐linkages present in HP. The protective group chemistry designed was also very flexible. From two advanced thioglycosyl disaccharide intermediates, all of the required disaccharide modules for library preparation could be generated in a divergent manner, which greatly simplified building‐block preparation. Furthermore, the reactivity‐independent nature of the preactivation‐based, one‐pot approach enabled us to mix the building blocks. This allowed rapid assembly of twelve HP/HS hexasaccharides with systematically varied and precisely controlled backbone structures in a combinatorial fashion. The speed and the high yields achieved in glycoassembly without the need to use a large excess of building blocks highlighted the advantages of our approach, which can be of general use to facilitate the study of HP/HS biology. As a proof of principle, this panel of hexasaccharides was used to probe the effect of backbone sequence on binding with the fibroblast growth factor‐2 (FGF‐2). A trisaccharide sequence of 2‐O‐sulfated iduronic acid flanked by N‐sulfated glucosamines was identified to be the minimum binding motif and N‐sulfation was found to be critical. This provides useful information for further development of more potent compounds towards FGF‐2 binding, which can have potential applications in wound healing and anticancer therapy.  相似文献   

5.
The synthesis of four novel 3′‐C‐branched and 4′‐C‐branched nucleosides and their transformation into the corresponding 3′‐O‐phosphoramidite building blocks for automated oligonucleotide synthesis is reported. The 4′‐C‐branched key intermediate 11 was synthesized by a convergent strategy and converted to its 2′‐O‐methyl and 2′‐deoxy‐2′‐fluoro derivatives, leading to the preparation of novel oligonucleotide analogues containing 4′‐C‐(aminomethyl)‐2′‐O‐methyl monomer X and 4′‐C‐(aminomethyl)‐2′‐deoxy‐2′‐fluoro monomer Y (Schemes 2 and 3). In general, increased binding affinity towards complementary single‐stranded DNA and RNA was obtained with these analogues compared to the unmodified references (Table 1). The presence of monomer X or monomer Y in a 2′‐O‐methyl‐RNA oligonucleotide had a negative effect on the binding affinity of the 2′‐O‐methyl‐RNA oligonucleotide towards DNA and RNA. Starting from the 3′‐C‐allyl derivative 28 , 3′‐C‐(3‐aminopropyl)‐protected nucleosides and 3′‐O‐phosphoramidite derivatives were synthesized, leading to novel oligonucleotide analogues containing 3′‐C‐(3‐aminopropyl)thymidine monomer Z or the corresponding 3′‐C‐(3‐aminopropyl)‐2′‐O,5‐dimethyluridine monomer W (Schemes 4 and 5). Incorporation of the 2′‐deoxy monomer Z induced no significant changes in the binding affinity towards DNA but decreased binding affinity towards RNA, while the 2′‐O‐methyl monomer Z induced decreased binding affinity towards DNA as well as RNA complements (Table 2).  相似文献   

6.
A new oxamido‐bridged dicopper(II) complex formulated as [Cu2(ndpox)(bpy)(CH3OH)2]‐ (ClO4), where H3ndpox is N‐(2‐hydroxy‐5‐nitrophenyl)‐N′‐[3‐(diethylamino)propyl]oxamide; and bpy represents 2,2′‐bipyridine, was synthesized and structurally characterized using X‐ray single‐crystal diffraction and other methods. In the molecule, the endo‐ and the exo‐copper(II) ions bridged by the cis ‐ndpox3− ligand are in {N3O2} and {N2O3} square‐ pyramidal environments, respectively. There is a three‐dimensional hydrogen bonding network dominated by O‐H···O and C‐H···O interactions in the crystal. The reactivity toward DNA/protein bovine serum albumin (BSA) revealed that the complex could interact with herring sperm DNA (HS‐DNA) through the intercalation mode, and effectively quench the intrinsic fluorescence of BSA via a static process. Cytotoxicity studies suggest that the complex displays selective cancer cell antiproliferative activity. The present investigation confirmed that the combined effects of both electron‐withdrawing and hydrophobic groups on the bridging ligand in the dicopper(II) complex systems can increase DNA/BSA‐binding ability and in vitro anticancer activity.  相似文献   

7.
Photoirradiation surface molecularly imprinted polymers for the separation of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin were synthesized using functionalized silica as a matrix, 4‐(phenyldiazenyl)phenol as a light‐sensitive monomer, and 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin as a template. Fourier transform infrared spectroscopy results indicated that 4‐(phenyldiazenyl)phenol was grafted onto the surface of functionalized silica. The obtained imprinted polymers exhibited specific recognition toward 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin. Equilibrium binding experiments showed that the photoirradiation surface molecularly imprinted polymers obtained the maximum adsorption amount of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin at 20.5 mg/g. In binding kinetic experiments, the adsorption reached saturation within 2 h with binding capacity of 72.8%. The experimental results showed that the adsorption capacity and selectivity of imprinted polymers were effective for the separation of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin, indicating that imprinted polymers could be used to isolate 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin from a conversion mixture containing β‐cyclodextrin and maltose. The results showed that the imprinted polymers prepared by this method were very promising for the selective separation of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin.  相似文献   

8.
A new bis(pyrazolylpyridine) ligand (H2L) has been prepared to form functional [Fe2(H2L)3]4+ metallohelicates. Changes to the synthesis yield six derivatives, X@[Fe2(H2L)3]X(PF6)2?xCH3OH ( 1 , x=5.7 and X=Cl; 2 , x=4 and X=Br), X@[Fe2(H2L)3]X(PF6)2?yCH3OH?H2O ( 1 a , y=3 and X=Cl; 2 a , y=1 and X=Br) and X@[Fe2(H2L)3](I3)2?3 Et2O ( 1 b , X=Cl; 2 b , X=Br). Their structure and functional properties are described in detail by single‐crystal X‐ray diffraction experiments at several temperatures. Helicates 1 a and 2 a are obtained from 1 and 2 , respectively, by a single‐crystal‐to‐single‐crystal mechanism. The three possible magnetic states, [LS–LS], [LS–HS], and [HS–HS] can be accessed over large temperature ranges as a result of the structural nonequivalence of the FeII centers. The nature of the guest (Cl? vs. Br?) shifts the spin crossover (SCO) temperature by roughly 40 K. Also, metastable [LS–HS] or [HS–HS] states are generated through irradiation. All helicates (X@[Fe2(H2L)3])3+ persist in solution.  相似文献   

9.
Copper ion (Cu2+) and L ‐cysteine (CySH) are closely correlated with physiological and pathological events of Alzheimer’s Disease (AD), however the detailed mechanism is still unclear, mainly owing to a lack of accurate analytical methods in live brains. Herein, we report a single biosensor for electrochemical ratiometric detection of Cu2+ and CySH in live rat brains with AD. N,N‐di‐(2‐picoly)ethylenediamine (DPEA) is first synthesized for specific recognition of Cu2+ to form a DPEA–Cu2+ complex. This complex shows high selectivity for CySH owing to the release of Cu2+ from the complex through CySH binding to Cu2+ center. In parallel, 5′‐MB‐GGCGCGATTTTTTTTTTTTT‐SH‐3′ (HS‐DNA‐MB, MB=Methylene Blue) is designed as an inner‐reference for providing a built‐in correction to improve the accuracy. As a result, combined with the amplified effect of Au nanoleaves, our single ratiometric biosensor can be successfully applied in real‐time detection of Cu2+ and CySH in the live rat brains with AD. To our knowledge, this is the first report on the accurate concentrations of Cu2+ and CySH in live rat brains with AD.  相似文献   

10.
A novel Prussian blue (PB)‐Fe3O4 composite has been prepared for the first time by self‐template method using PB as the precursor. According to this method, Fe3O4 nanoparticles distributed uniformly on the surface of PB cube. The feed ratio of sodium acetate to PB has been proved to be a key factor for magnetic properties and electro‐catalysis properties of the composite. Under the experimental conditions, the saturation magnetization value (Ms) of PB‐Fe3O4–2 composite was 22 emug?1, while the Ms value of other samples reduced. The composites also showed a good peroxidase‐like activity for the oxidation of substrate 3,3,5,5‐tetramethylbenzidine (TMB) in the presence of H2O2. The catalytic reduction of hydrogen peroxide capacity was PB‐Fe3O4–1> PB‐Fe3O4–2> PB‐Fe3O4–3> PB‐Fe3O4–0, which confirmed the Fe(II) centres in PB surface and Fe3O4 nanoparticles had synergistic effect on catalytic reduction of hydrogen peroxide.  相似文献   

11.
The automated on‐line synthesis of DNA‐3′‐PNA chimeras 1 – 4 and (2′‐O‐methyl‐RNA)‐3′‐PNA chimeras 5 – 8 is described, in which the 3′‐terminal part of the oligonucleotide is linked to the N‐terminal part of the PNA via N‐(ω‐hydroxyalkyl)‐N‐[(thymin‐1‐yl)acetyl]glycine units (alkyl=Et, Ph, Bu, and pentyl). By means of UV thermal denaturation, the binding affinities of all chimeras were directly compared by determining their Tm values in the duplex with complementary DNA and RNA. All investigated DNA‐3′‐PNA chimeras and (2′‐O‐methyl‐RNA)‐3′‐PNA chimeras form more‐stable duplexes with complementary DNA and RNA than the corresponding unmodified DNA. Interestingly, a N‐(3‐hydroxypropyl)glycine linker resulted in the highest binding affinity for DNA‐3′‐PNA chimeras, whereas the (2′‐O‐methyl‐RNA)‐3′‐PNA chimeras showed optimal binding with the homologous N‐(4‐hydroxybutyl)glycine linker. The duplexes of (2′‐O‐methyl‐RNA)‐3′‐PNA chimeras and RNA were significantly more stable than those containing the corresponding DNA‐3′‐PNA chimeras. Surprisingly, we found that the charged (2′‐O‐methyl‐RNA)‐3′‐PNA chimera with a N‐(4‐hydroxybutyl)glycine‐based unit at the junction to the PNA part shows the same binding affinity to RNA as uncharged PNA. Potential applications of (2′‐O‐methyl‐RNA)‐3′‐PNA chimeras include their use as antisense agents acting by a RNase‐independent mechanism of action, a prerequisite for antisense‐oligonucleotide‐mediated correction of aberrant splicing of pre‐mRNA.  相似文献   

12.
Two different zinc sulfite compounds have been prepared through the decomposition of pyrosulfite–­di­thionite ions in aqueous solution, viz. a dimeric complex, di‐μ‐sulfito‐κ3O,O′:O′′;κ3O:O′,O′′‐bis­[(4,4′‐di­methyl‐2,2′‐bi­pyridine‐κ2N,N′)­zinc(II)] dihydrate, [Zn2(SO3)2(C12H12N2)2]·2H2O, (I), which was solved and refined from a twinned sample, and an extended polymer, poly­[[aqua(1,10‐phenanthroline‐κ2N,N′)­zinc(II)]‐μ3‐sulfito‐κ2O:O′:O′′‐zinc(II)‐μ3‐sulfito‐κ3O:O:O′], [Zn2(SO3)2(C12H10N2)(H2O)]n, (II). In (I), the dinuclear ZnII complex has a center of symmetry. The cation is five‐coordinate in a square‐pyramidal arrangement, the anion fulfilling a bridging chelating role. Compound (II) comprises two different zinc units, one being five‐coordinate (square pyramidal) and the other four‐coordinate (trigonal pyramidal), and two independent sulfite groups with different binding modes to the cationic centers.  相似文献   

13.
Reaction between an aqueous ethanol solution of tin(II) chloride and that of 4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐one in the presence of O2 gave the compound cis‐dichlorobis(4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐onato) tin(IV) [(C26H26N4O4)SnCl2]. The compound has a six‐coordinated SnIV centre in a distorted octahedral configuration with two chloro ligands in cis position. The tin atom is also at a pseudo two‐fold axis of inversion for both the ligand anions and the two cis‐chloro ligands. The orange compound crystallizes in the triclinic space group P 1 with unit cell dimensions, a = 8.741(3) Å, b = 12.325(7) Å, c = 13.922(7) Å; α = 71.59(4), β = 79.39(3), γ = 75.18(4); Z = 2 and Dx = 1.575 g cm–3. The important bond distances in the chelate ring are Sn–O [2.041 to 2.103 Å], Sn–Cl [2.347 to 2.351 Å], C–O [1.261 to 1.289 Å] and C–C [1.401 Å] the bond angles are O–Sn–O 82.6 to 87.7° and Cl–Sn–Cl 97.59°. The UV, IR, 1H NMR and 119Sn Mössbauer spectral data of the compound are reported and discussed.  相似文献   

14.
Two new isostructural iron(II) spin‐crossover (SCO) framework (SCOF) materials of the type [Fe(dpms)2(NCX)2] (dpms=4,4′‐dipyridylmethyl sulfide; X=S ( SCOF‐6(S) ), X=Se ( SCOF‐6(Se) )) have been synthesized. The 2D framework materials consist of undulating and interpenetrated rhomboid (4,4) nets. SCOF‐6(S) displays an incomplete SCO transition with only approximately 30 % conversion of high‐spin (HS) to low‐spin iron(II) sites over the temperature range 300–4 K (T1/2=75 K). In contrast, the NCSe? analogue, SCOF‐6(Se) , displays a complete SCO transition (T1/2=135 K). Photomagnetic characterizations reveal quantitative light‐ induced excited spin‐state trapping (LIESST) of metastable HS iron(II) sites at 10 K. The temperature at which the photoinduced stored information is erased is 58 and 50 K for SCOF‐6(S) and SCOF‐6(Se) , respectively. Variable‐pressure magnetic measurements were performed on SCOF‐6(S) , revealing that with increasing pressure both the T1/2 value and the extent of spin conversion are increased; with pressures exceeding 5.2 kbar a complete thermal transition is achieved. This study confirms that kinetic trapping effects are responsible for hindering a complete thermally induced spin transition in SCOF‐6(S) at ambient pressure due to an interplay between close T1/2 and T(LIESST) values.  相似文献   

15.
We describe the synthesis, characterization, and select properties of a novel polyurethane (PU) prepared using a new polyisobutylene diol, HO‐CH2CH2‐S‐PIB‐S‐CH2CH2‐OH, soft segment and conventional hard segments. The diol is synthesized by terminal functionalization of ally‐telechelic PIB followed by low‐cost thiol‐ene click chemistry. Properties of ‐S‐ containing PU (PIBS‐PU) containing 72.5% PIB were investigated and compared to similar PUs made with HO‐PIB‐OH (PIBO‐PU). Hydrolytic resistance was studied by contact with phosphate‐buffered saline, oxidative resistance by immersing in concentrated HNO3, and metal ion oxidation resistance by exposure to CoCl2/H2O2. Hydrolytic and oxidative resistances of PIBS‐PU and PIBO‐PU are similar and superior to a commercial PDMS‐based PU, Elast‐Eon? E2A. According to 1H NMR spectroscopy the ‐S‐ in PIBS‐PUs remained unchanged upon treatment with HNO3, however, oxidized mainly to ‐SO2‐ by CoCl2/H2O2. Static mechanical properties of PIBS‐PU and PIBO‐PU are similar, except creep resistance of PIBS‐PU is surprisingly superior. The thermal stability of PIBS‐PUs is ~15 °C higher than that of PIBO‐PU. FTIR spectroscopy indicates H bonded S atoms (N‐H…S) between soft and hard segments, which noticeably affect properties. DSC and XRD studies suggest random low‐periodicity crystals dispersed within a soft matrix. Energy dispersive X‐ray spectroscopy–scanning electron microscopy indicates homogeneous distribution of S atoms on PIBS‐PU surfaces. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1119–1131  相似文献   

16.
17.
While six‐coordinate iron(III) porphyrin complexes with pyridine N‐oxides as axial ligands have been studied as they exhibit rare spin‐crossover behavior, studies of five‐coordinate iron(III) porphyrin complexes including neutral axial ligands are rare. A five‐coordinate pyridine N‐oxide–5,10,15,20‐tetraphenylporphyrinate–iron(III) complex, namely (pyridine N‐oxide‐κO)(5,10,15,20‐tetraphenylporphinato‐κ4N,N′,N′′,N′′′)iron(III) hexafluoroantimonate(V) dichloromethane disolvate, [Fe(C44H28N4)(C5H5NO)][SbF6]·2CH2Cl2, was isolated and its crystal structure determined in the space group P. The porphyrin core is moderately saddled and the Fe—O—N bond angle is 122.08 (13)°. The average Fe—N bond length is 2.03 Å and the Fe—ONC5H5 bond length is 1.9500 (14) Å. This complex provides a rare example of a five‐coordinate iron(III) porphyrin complex that is coordinated to a neutral organic ligand through an O‐monodentate binding mode.  相似文献   

18.
Reaction of O,O′‐diisopropylthiophosphoric acid isothiocyanate (iPrO)2P(S)NCS with 1,10‐diaza‐18‐crown‐6, 1,7‐diaza‐18‐crown‐6, or 1,7‐diaza‐15‐crown‐5 leads to the N‐thiophosphorylated bis‐thioureas N,N′‐bis[C(S)NHP(S)(OiPr)2]‐1,10‐diaza‐18‐crown‐6 ( H2LI ), N,N′‐bis[C(S)NHP(S)(OiPr)2]‐1,7‐diaza‐18‐crown‐6 ( H2LII ) and N,N′‐bis[C(S)NHP(S)(OiPr)2]‐1,7‐diaza‐15‐crown‐5 ( H2LIII ). Reaction of the potassium salts of H2LI–III with a mixture of CuI and 2,2′‐bipyridine ( bpy ) or 1,10‐phenanthroline ( phen ) in aqueous EtOH/CH2Cl2 leads to the dinuclear complexes [Cu2(bpy)2LI–III] and [Cu2(phen)2LI–III] . The structures of these compounds were investigated by 1H, 31P{1H} NMR spectroscopy, and elemental analysis. The crystal structures of H2LI and [Cu2(phen)2LI] were determined by single‐crystal X‐ray diffraction. Extraction capacities of the obtained compounds in comparison to the related compounds 1,10‐diaza‐18‐crown‐6, N,N′‐bis[C(=CMe2)CH2P(O)(OiPr)2]‐1,10‐diaza‐18‐crown‐6, N,N′‐bis[C(S)NHP(O)(OiPr)2]‐1,10‐diaza‐18‐crown‐6 towards the picrate salts LiPic, NaPic, KPic. and NH4Pic were also studied.  相似文献   

19.
Crystals of L‐leucylglycine (L‐Leu–Gly) 0.67‐hydrate, C8H16N2O3·0.67H2O, (I), were obtained from an aqueous solution. There are three symmetrically independent dipeptide zwitterionic molecules in (I) and they are parallel to one another. The hydrogen‐bond network composed of carboxylate and amino groups and water molecules extends parallel to the ab plane. Hydrophilic regions composed of main chains and hydrophobic regions composed of the isobutyl groups of the leucyl residues are aligned alternately along the c axis. An imidazolidinone derivative was obtained from L‐Leu–Gly and acetone, viz. [(4S)‐2,2‐dimethyl‐4‐(2‐methylpropyl)‐5‐oxoimidazolidin‐3‐ium‐1‐yl]acetate, C11H20N2O3, (II), and was crystallized from a methanol–acetone solution of L‐Leu–Gly. The unit‐cell parameters coincide with those reported previously for L‐Leu–Gly dihydrate revealing that the previously reported values should be assigned to the structure of (II). One of the imidazolidine N atoms is protonated and the ring is nearly planar, except for the protonated N atom. Protonated N atoms and deprotonated carboxy groups of neighbouring molecules form hydrogen‐bonded chains. The ring carbonyl group is not involved in hydrogen bonding.  相似文献   

20.
A new three‐dimensional graphene oxide‐wrapped melamine foam was prepared and used as a solid‐phase extraction substrate. β‐Cyclodextrin was fabricated onto the surface of three‐dimensional graphene oxide‐wrapped melamine foam by a chemical covalent interaction. In view of a specific surface area and a large delocalized π electron system of graphene oxide, in combination with a hydrophobic interior cavity and a hydrophilic peripheral face of β‐cyclodextrin, the prepared extraction material was proposed for the determination of flavonoids. In order to demonstrate the extraction properties of the as‐prepared material, the adsorption energies were theoretically calculated based on periodic density functional theory. Static‐state and dynamic‐state binding experiments were also investigated, which revealed the monolayer coverage of flavonoids onto the β‐cyclodextrin/graphene oxide‐wrapped melamine foams through the chemical adsorption. 1H NMR spectroscopy indicated the formation of flavonoids–β‐cyclodextrin inclusion complexes. Under the optimum conditions, the proposed method exhibited acceptable linear ranges (2–200 μg/L for rutin and quercetin‐3‐O‐rhamnoside; 5–200 μg/L for quercetin) with correlation coefficients ranging from 0.9979 to 0.9994. The batch‐to‐batch reproducibility (= 5) was 3.5–6.8%. Finally, the as‐established method was satisfactorily applied for the determination of flavonoids in Lycium barbarum (Goji) samples with relative recoveries in the range of 77.9–102.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号