首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identifying the location and expression levels of enzymes under hypoxic conditions in cancer cells is vital in early-stage cancer diagnosis and monitoring. By encapsulating a fluorescent substrate, L-NO2 , within the NADH mimic-containing metal–organic capsule Zn- MPB , we developed a cofactor-substrate-based supramolecular luminescent probe for ultrafast detection of hypoxia-related enzymes in solution in vitro and in vivo. The host–guest structure fuses the coenzyme and substrate into one supramolecular probe to avoid control by NADH, switching the catalytic process of nitroreductase from a double-substrate mechanism to a single-substrate one. This probe promotes enzyme efficiency by altering the substrate catalytic process and enhances the electron transfer efficiency through an intra-molecular pathway with increased activity. The enzyme content and fluorescence intensity showed a linear relationship and equilibrium was obtained in seconds, showing potential for early tumor diagnosis, biomimetic catalysis, and prodrug activation.  相似文献   

2.
Exploiting catalytic carbonyl–olefin metathesis is an ongoing challenge in organic synthesis. Reported herein is an FeCl3‐catalyzed ring‐closing carbonyl–olefin metathesis. The protocol allows access to a range of carbo‐/heterocyclic alkenes with good efficiency and excellent trans diastereoselectivity. The methodology presents one of the rare examples of catalytic ring‐closing carbonyl–olefin metathesis. This process is proposed to take place by FeCl3‐catalyzed oxetane formation followed by retro‐ring‐opening to deliver metathesis products.  相似文献   

3.
The radical S‐adenosylmethionine (SAM) aminomutases represent an important pathway for the biosynthesis of β‐amino acids. In this study, we report biochemical characterization of BlsG involved in blasticidin S biosynthesis as a radical SAM arginine 2,3‐aminomutase. We showed that BlsG acts on both L‐arginine and L‐lysine with comparable catalytic efficiencies. Similar dual substrate specificity was also observed for the lysine 2,3‐aminomutase from Escherichia coli (LAMEC). The catalytic efficiency of LAMEC is similar to that of BlsG, but is significantly lower than that of the enzyme from Clostridium subterminale (LAMCS), which acts only on L‐lysine rather than on L‐arginine. Moreover, we showed that enzymes can be grouped into two major phylogenetic clades, each corresponding to a certain C3 stereochemistry of the β‐amino acid product. Our study expands the radical SAM aminomutase members and provides insights into enzyme evolution, supporting a trade‐off between substrate promiscuity and catalytic efficiency.  相似文献   

4.
To avoid the harmful effects of metallic residues in poly(1,4‐dioxan‐2‐one) (PPDO) for medical applications, the enzymatic polymerization of 1,4‐dioxan‐2‐one (PDO) was carried out at 60 °C for 15 h with 5 wt % immobilized lipase CA. The lipase CA, derived from Candida antarctica, exhibited especially high catalytic activity. The highest weight‐average molecular weight (Mw = 41,000) was obtained. The PDO polymerization by the lipase CA occurred because of effective enzyme catalysis. The water component appeared to act not only as a substrate of the initiation process but also as a chain cleavage agent. A slight amount of water enhanced the polymerization, but excess water depressed the polymerization. PPDO prepared by enzyme‐catalyzed polymerization is a metal‐free polyester useful for medical applications. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1560–1567, 2000  相似文献   

5.
A supramolecular system that can activate an enzyme through photo‐isomerization was constructed by using a liposomal membrane scaffold. The design of the system was inspired by natural signal transduction systems, in which enzymes amplify external signals to control signal transduction pathways. The liposomal membrane, which provided a scaffold for the system, was prepared by self‐assembly of a photoresponsive receptor and a cationic synthetic lipid. NADH‐dependent L ‐lactate dehydrogenase, the signal amplifier, was immobilized on the liposomal surface by electrostatic interactions. Recognition of photonic signals by the membrane‐bound receptor induced photo‐isomerization, which significantly altered the receptor’s metal‐binding affinity. The response to the photonic signal was transmitted to the enzyme by Cu2+ ions. The enzyme amplified the chemical information through a catalytic reaction to generate the intended output signal.  相似文献   

6.
The synthesis of a new, cubic M8L6 cage is described. This new assembly was characterised by using NMR spectroscopy, DOSY, TGA, MS, and molecular modelling techniques. Interestingly, the enlarged cavity size of this new supramolecular assembly allows the selective encapsulation of tetra(4‐pyridyl)metalloporphyrins (MII(TPyP), M=Zn, Co). The obtained encapsulated cobalt–porphyrin embedded in the cubic zinc–porphyrin assembly is the first example of a catalytically active encapsulated transition‐metal complex in a cubic M8L6 cage. The substrate accessibility of this system was demonstrated through radical‐trapping experiments, and its catalytic activity was demonstrated in two different radical‐type transformations. The reactivity of the encapsulated CoII(TPyP) complex is significantly increased compared to free CoII(TPyP) and other cobalt–porphyrin complexes. The reactions catalysed by this system are the first examples of cobalt–porphyrin‐catalysed radical‐type transformations involving diazo compounds which occur inside a supramolecular cage.  相似文献   

7.
Enzymes have been used to direct the conversion of prodrugs in cancer therapy. However, non‐specific distribution of endogenous enzymes seriously hinders their bioapplications. Herein, we developed a near‐infrared‐triggered locoregional chemo‐photothermal therapy based on the exogenous enzyme delivery and remolded tumor mivroenvironment. The catalytic efficiency of enzymes was enhanced by the hyperthermia, and the therapeutic efficacy of photothermal therapy (PTT) was improved owing to the inhibition of heat shock protein 90 by chemotherapeutics. The locoregional chemo‐phototherapy achieved a one‐time successful cure in 4T1 tumor‐bearing mice model. Thus, a mutually reinforcing feedback loop between PTT and chemotherapy can be initiated by the irradiation, which holds a promising future in cancer therapy.  相似文献   

8.
Shape‐ and functionality‐controlled organization of porphyrin derivatives–C60 supramolecular assemblies using TiO2 nanotubes and nanoparticles has been achieved for the development of photochemical solar cells. The differences in the efficiency of light‐energy conversion of these solar cells are explained on the basis of the geometrical orientation of the porphyrins with respect to the TiO2 surface and the supramolecular complex formed with C60. The maximum photon‐conversion efficiency (IPCE) of 60 % obtained with TiO2 nanotube architecture is higher than the value obtained with nanoparticle architecture. The results presented in this study show the importance of substrate morphology in promoting electron transport within the mesoscopic semiconductor film.  相似文献   

9.
Here, we describe a computational approach for studying enzymes that catalyze complex multi‐step reactions and apply it to Ribulose 1,5‐bisphosphate carboxylase–oxygenase (Rubisco), the enzyme that fixes atmospheric carbon dioxide within photosynthesis. In the 5‐step carboxylase reaction, the substrate Ribulose‐1,5‐bisphosphate (RuBP) first binds Rubisco and undergoes enolization before binding the second substrate, CO2. Hydration of the RuBP.CO2 complex is followed by C C bond scission and stereospecific protonation. However, details of the roles and protonation states of active‐site residues, and sources of protons and water, remain highly speculative. Large‐scale computations on active‐site models provide a means to better understand this complex chemical mechanism. The computational protocol comprises a combination of hybrid semi‐empirical quantum mechanics and molecular mechanics within constrained molecular dynamics simulations, together with constrained gradient minimization calculations using density functional theory. Alternative pathways for hydration of the RuBP.CO2 complex and associated active‐site protonation networks and proton and water sources were investigated. The main findings from analysis of the resulting energetics advocate major revision to existing mechanisms such that: hydration takes place anti to the CO2; both hydration and C C bond scission require early protonation of CO2 in the RuBP.CO2 complex; C C bond scission and stereospecific protonation reactions are concerted and, effectively, there is only one stable intermediate, the C3‐gemdiolate complex. Our main conclusions for interpreting enzyme kinetic results are that the gemdiolate may represent the elusive Michaelis–Menten‐like complex corresponding to the empirical Km (=Kc) with turnover to product via bond scission concerted with stereospecific protonation consistent with the observed catalytic rate. © 2018 Wiley Periodicals, Inc.  相似文献   

10.
Achieving enzyme‐like catalytic activity and stereoselectivity without the typically high substrate specificity of enzymes is a challenge in the development of artificial catalysts for asymmetric synthesis. Polyfunctional catalysts are considered to be a promising tool for achieving excellent catalytic efficiency. A polyfunctional catalyst system was developed, which incorporates two Lewis acidic/Brønsted basic cobalt centers in combination with triazolium moieties that are crucial for high reactivity and excellent stereoselectivity in the direct 1,4‐addition of oxindoles to maleimides. The catalyst is assembled through click chemistry and is readily recyclable through precipitation by making use of its charges. Kinetic studies support a cooperative mode of action. Diastereodivergency is achievable with either Boc‐protected or unprotected maleimide.  相似文献   

11.
The retaining glycosyltransferase GalNAc‐T2 is a member of a large family of human polypeptide GalNAc‐transferases that is responsible for the post‐translational modification of many cell‐surface proteins. By the use of combined structural and computational approaches, we provide the first set of structural snapshots of the enzyme during the catalytic cycle and combine these with quantum‐mechanics/molecular‐mechanics (QM/MM) metadynamics to unravel the catalytic mechanism of this retaining enzyme at the atomic‐electronic level of detail. Our study provides a detailed structural rationale for an ordered bi–bi kinetic mechanism and reveals critical aspects of substrate recognition, which dictate the specificity for acceptor Thr versus Ser residues and enforce a front‐face SNi‐type reaction in which the substrate N‐acetyl sugar substituent coordinates efficient glycosyl transfer.  相似文献   

12.
Although the photodimerization of acenaphthylene (ACE) has been known for 100 years, the asymmetric cycloaddition of its 1‐substituted derivatives is unknown. Herein, we report a supramolecular photochirogenic approach in which a homochiral and photoactive Δ/Λ‐[Pd6(RuL3)8]28+ metal–organic cage (Δ/Λ‐MOC‐16) is used as a supramolecular reactor for the enantioselective exited‐state photocatalysis of 1‐Br‐ACE. Owing to preorganization of the substrates by the supramolecular cage, stereochemical control of the triplet state, and nanospace transfer of energy and chirality, the cycloaddition of ACE proceeded with high selectivity for the formation of anti over syn stereoisomers, whereas the regio‐, stereo‐, and enantioselective cycloaddition of unsymmetrical 1‐Br‐ACE showed effective enantiodifferentiation of a pair of anti head‐to‐head stereoisomers. The enzyme‐mimicking photocatalysis was verified by catalytic turnover, rate enhancement, and competing‐guest inhibition experiments.  相似文献   

13.
Specific turn‐on detection of enzyme activities is of fundamental importance in drug discovery research, as well as medical diagnostics. Although magnetic resonance imaging (MRI) is one of the most powerful techniques for noninvasive visualization of enzyme activity, both in vivo and ex vivo, promising strategies for imaging specific enzymes with high contrast have been very limited to date. We report herein a novel signal‐amplifiable self‐assembling 19F NMR/MRI probe for turn‐on detection and imaging of specific enzymatic activity. In NMR spectroscopy, these designed probes are “silent” when aggregated, but exhibit a disassembly driven turn‐on signal change upon cleavage of the substrate part by the catalytic enzyme. Using these 19F probes, nanomolar levels of two different target enzymes, nitroreductase (NTR) and matrix metalloproteinase (MMP), could be detected and visualized by 19F NMR spectroscopy and MRI. Furthermore, we have succeeded in imaging the activity of endogenously secreted MMP in cultured media of tumor cells by 19F MRI, depending on the cell lines and the cellular conditions. These results clearly demonstrate that our turn‐on 19F probes may serve as a screening platform for the activity of MMPs.  相似文献   

14.
Alcohol dehydrogenase (ADH) catalyzes the final step in the biosynthesis of methanol from CO2. Here, we report the steady-state kinetics for ADH, using a homogeneous enzyme preparation with formaldehyde as the substrate and nicotinamide adenine dinucleotide (NADH) as the cofactor. When changing NADH concentrations with the fixed concentrations of HCHO (more or less than NADH), kinetic studies revealed a particular zigzag phenomenon for the first time. Increasing formaldehyde concentration can weaken substrate inhibition and improve catalytic efficiency. The kinetic mechanism of ADH was analyzed using the secondary fitting method. The double reciprocal plots (1/v~1/[HCHO] and 1/[NADH]) strongly demonstrated that the substrate inhibition by NADH was uncompetitive versus formaldehyde and partial. In the direction of formaldehyde reduction, ADH has an ordered kinetic mechanism with formaldehyde adding to enzyme first and product methanol released last. The second reactant NADH can combine with the enzyme–methanol complex and then methanol dissociates from it at a slower rate than from enzyme–methanol. The reaction velocity depends on the relative rates of the alternative pathways. The addition of NADH also accelerates the releasing of methanol. As a result, substrate inhibition and activation occurred intermittently, and the zigzag double reciprocal plot (1/v~1/[NADH]) was obtained.  相似文献   

15.
The combination of enzymes with semiconductors enables the photoelectrochemical characterization of electron‐transfer processes at highly active and well‐defined catalytic sites on a light‐harvesting electrode surface. Herein, we report the integration of a hydrogenase on a TiO2‐coated p‐Si photocathode for the photo‐reduction of protons to H2. The immobilized hydrogenase exhibits activity on Si attributable to a bifunctional TiO2 layer, which protects the Si electrode from oxidation and acts as a biocompatible support layer for the productive adsorption of the enzyme. The p‐Si|TiO2|hydrogenase photocathode displays visible‐light driven production of H2 at an energy‐storing, positive electrochemical potential and an essentially quantitative faradaic efficiency. We have thus established a widely applicable platform to wire redox enzymes in an active configuration on a p‐type semiconductor photocathode through the engineering of the enzyme–materials interface.  相似文献   

16.
The Leloir donors are nucleotide sugars essential for a variety of glycosyltransferases (GTs) involved in the transfer of a carbohydrate to an acceptor substrate, typically a protein or an oligosaccharide. A series of less‐polar nucleotide sugar analogues derived from uridine have been prepared by replacing one phosphate unit with an alkyl chain. The methodology is based on the radical hydrophosphonylation of alkenes, which allows coupling of allyl glycosyl compounds with a phosphate unit suitable for conjugation to uridine. Two of these compounds, the GalNAc and galactose derivatives, were further tested on a model GT, such as GalNAc‐T2 (an important GT widely distributed in human tissues), to probe that both compounds bound in the medium–high micromolar range. The crystal structure of GalNAc‐T2 with the galactose derivative traps the enzyme in an inactive form; this suggests that compounds only containing the β‐phosphate could be efficient ligands for the enzyme. Computational studies with GalNAc‐T2 corroborate these findings and provide further insights into the mechanism of the catalytic cycle of this family of enzymes.  相似文献   

17.
《化学:亚洲杂志》2018,13(19):2868-2880
The reaction of 3,7‐diacetyl‐1,3,7‐triaza‐5‐phosphabicyclo[3.3.1]nonane (DAPTA) with metal salts of CuII or NaI/NiII under mild conditions led to the oxidized phosphane derivative 3,7‐diacetyl‐1,3,7‐triaza‐5‐phosphabicyclo[3.3.1]nonane‐5‐oxide (DAPTA=O) and to the first examples of metal complexes based on the DAPTA=O ligand, that is, [CuII(μ‐CH3COO)2O‐DAPTA=O)]2 ( 1 ) and [Na(1κOO′;2κO‐DAPTA=O)(MeOH)]2(BPh4)2 ( 2 ). The catalytic activity of 1 was tested in the Henry reaction and for the aerobic 2,2,6,6‐tetramethylpiperidin‐1‐oxyl (TEMPO)‐mediated oxidation of benzyl alcohol. Compound 1 was also evaluated as a model system for the catechol oxidase enzyme by using 3,5‐di‐tert‐butylcatechol as the substrate. The kinetic data fitted the Michaelis–Menten equation and enabled the obtainment of a rate constant for the catalytic reaction; this rate constant is among the highest obtained for this substrate with the use of dinuclear CuII complexes. DFT calculations discarded a bridging mode binding type of the substrate and suggested a mixed‐valence CuII/CuI complex intermediate, in which the spin electron density is mostly concentrated at one of the Cu atoms and at the organic ligand.  相似文献   

18.
A facile strategy is presented to form 3D porous Cu@Cu2O aerogel networks by self‐assembling Cu@Cu2O nanoparticles with the diameters of ca. 40 nm for constructing catalytic interfaces. Unexpectedly, the prepared Cu@Cu2O aerogel networks display excellent electrocatalytic activity to glucose oxidation at a low onset potential of ca. 0.25 V. Moreover, the Cu@Cu2O aerogels also can act as mimicking‐enzymes including horseradish peroxidase and NADH peroxidase, and show obvious enzymatic catalytic activities to the oxidation of dopamine (DA), o‐phenyldiamine (OPD), 3,3,5,5‐tetramethylbenzidine (TMB), and dihydronicotinamide adenine dinucleotide (NADH) in the presence of H2O2. These 3D Cu@Cu2O aerogel networks are a new class of porous catalytic materials as mimic peroxidases and electrocatalysts and offer a novel platform to construct catalytic interfaces for promising applications in electrochemical sensors and artificial enzymatic catalytic systems.  相似文献   

19.
Catalytic antibodies are the best availablea llaround enzyme mimics. They provide a unique experimental approach and some special insights into general questions about catalysis by enzymes. They offer enantiospecific reactions and levels of substrate binding that compare well with typical enzyme reactions, but not—so far—comparable catalytic efficiency. We and others have used the Kemp elimination as a probe of catalytic efficiency in antibodies. We compare these reactions with nonspecific catalysis by other proteins, and with catalysis by enzymes. Several simple reactions are catalyzed by theserum albumins with Michaelis-Menten kinetics, and can be shown to involve substrate binding and catalysis by local functional groups. Here, we report the details of one investigation, which implicate known binding sites on the protein surface and discuss implications for catalyst design and efficiency.  相似文献   

20.
To understand the fundamentals of enzymatic reactions confined in micro‐/nanosystems, the construction of a small enzyme reactor coupled with an integrated real‐time detection system for monitoring the kinetic information is a significant challenge. Nano‐enzyme array reactors were fabricated by covalently linking enzymes to the inner channels of a porous anodic alumina (PAA) membrane. The mechanical stability of this nanodevice enables us to integrate an electrochemical detector for the real‐time monitoring of the formation of the enzyme reaction product by sputtering a thin Pt film on one side of the PAA membrane. Because the enzymatic reaction is confined in a limited nanospace, the mass transport of the substrate would influence the reaction kinetics considerably. Therefore, the oxidation of glucose by dissolved oxygen catalyzed by immobilized glucose oxidase was used as a model to investigate the mass‐transport‐related enzymatic reaction kinetics in confined nanospaces. The activity and stability of the enzyme immobilized in the nanochannels was enhanced. In this nano‐enzyme reactor, the enzymatic reaction was controlled by mass transport if the flux was low. With an increase in the flux (e.g., >50 μL min?1), the enzymatic reaction kinetics became the rate‐determining step. This change resulted in the decrease in the conversion efficiency of the nano‐enzyme reactor and the apparent Michaelis–Menten constant with an increase in substrate flux. This nanodevice integrated with an electrochemical detector could help to understand the fundamentals of enzymatic reactions confined in nanospaces and provide a platform for the design of highly efficient enzyme reactors. In addition, we believe that such nanodevices will find widespread applications in biosensing, drug screening, and biochemical synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号