首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Copper(0)‐mediated radical polymerization (single electron transfer‐living radical polymerization) is an efficient polymerization technique that allows control over the polymerization of acrylates, vinyl chloride and other monomers, yielding bromide terminated polymer. In this contribution, we investigate the evolution of the end‐group fidelity at very high conversion both in the presence and in the absence of initially added copper (II) bromide (CuBr2). High resolution electrospray‐ionization mass spectroscopy (ESI‐MS) allows determination of the precise chemical structure of the dead polymers formed during the polymerization to very high monomer conversion, including post polymerization conditions. Two different regimes can be identified via ESI‐MS analysis. During the polymerization, dead polymer results mainly from termination via disproportionation, whereas at very high conversion (or in the absence of monomer, that is, post‐polymerization), dead polymers are predominantly generated by chain transfer reactions (presumably to ligand). The addition of CuBr2 significantly reduces the extent of termination by both chain transfer and disproportionation, at very high monomer conversion and under post‐polymerization conditions, offering a convenient approach to maintaining high end‐group fidelity in Cu(0)‐mediated radical polymerization. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
The photograft polymerization of various vinyl monomers onto nanosized silica surfaces was investigated. It was initiated by eosin moieties introduced onto the silica surface. The preparation of the silica with eosin moieties was achieved by the reaction of eosin with benzyl chloride groups on the silica surface.These were introduced by the reaction of surface silanol groups with 4‐(chloromethyl)phenyltrimethoxysilane in the presence of t‐butyl ammonium bromide as a phase‐transfer catalyst. The photopolymerization of various vinyl monomers, such as styrene, acrylamide, acrylic acid, and acrylonitrile was successfully initiated by eosin moieties on the silica surface in the presence of ascorbic acid as a reducing agent and by oxygen. The corresponding polymers were grafted from the silica surface. The grafting efficiency (percentage of grafted polymer to total polymer formed) in the photoinitiation system was much larger than that in the radical polymerization initiated by surface radicals; these radicals were formed by the thermal decomposition of azo groups introduced onto the silica surface. It was found that the polymer‐grafted silica gave stable dispersions in good solvents of grafted polymer and the wettability of the surfaces can be easily controlled by grafting of polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 600–606, 2005  相似文献   

3.
The synthesis of diblock copolymers with designed molecular weight distributions (MWDs) was successfully demonstrated in a continuous living cationic polymerization system using simple equipment. The control of MWDs was achieved by gradually feeding a polymerization reaction mixture into a terminating agent. As thermosensitive diblock copolymers, poly(vinyl ethers) containing a thermosensitive segment with oxyethylene side chains and a hydrophilic segment were prepared. The polymerization was carried out in a gas‐tight microsyringe, and the polymerization mixture was added continuously into methanol during the second‐stage polymerization. The self‐association behavior of the resulting diblock copolymers was evaluated by dynamic light scattering in water. MWD‐designed polymers with thermosensitive segments that varied continuously in length and hydrophilic segments of nearly uniform lengths formed micelles with a broad size distribution. Conversely, polymers with nearly uniform thermosensitive segments and hydrophilic segments of different lengths formed micelles with a narrow size distribution, as observed with conventional narrow MWD diblock copolymers. Thus, the MWD of the thermosensitive segment proved a decisive factor in achieving fine control of self‐association. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2212–2221, 2008  相似文献   

4.
A novel amine functionalized RAFT agent, 2‐cyanoprop‐2‐yl(4‐N,N‐dimethylaminophenyl) dithiobenzoate has been synthesized and used to control the polymerization of vinyl monomers. This dithiobenzoate RAFT agent, although air sensitive, controlled the polymerization of MMA and St very well in an inert atmosphere and the polymerization results obtained were marginally better than using the most popular 2‐cyanoprop‐2‐yl dithiobenzoate RAFT agent. The living nature of these polymerizations was confirmed by kinetics study and chain extension reactions to yield narrow disperse di‐block copolymers. Most importantly, use of this novel RAFT agent simplified the removal procedure of the color causing end thiocarbonyl group from the RAFT derived polymers and thereby leading to polymers with improved appearance. The removal of end group from the polymer was confirmed by 1H NMR and UV‐vis spectroscopic techniques. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
在Novozyme 435脂肪酶催化下, 甲基丙烯酸羟乙酯(HEMA)引发己内酯(ε-CL)开环聚合反应, 得到一端为双键, 另一端为羟基的直链聚己内酯(PCL)产物; 将其端羟基官能化得到大分子AB*型单体, 与苯乙烯以原子转移自由基聚合(ATRP)反应形式进行自缩合乙烯基共聚合, 得到超支化结构聚苯乙烯-b-聚己内酯产物.  相似文献   

6.
We have developed a new strategy for the synthesis of epoxide‐containing polymers where the pendant reactive groups are connected to the main backbone via thermally labile oxonorbornene groups. The polymers were synthesized by radical 1,4‐polymerization of the appropriate bicyclic diene monomer. The produced polymers can be crosslinked in the presence of a diamine and de‐crosslinked by thermal treatment at 160 °C, which induces retro‐Diels–Alder reaction and cleaves pendant groups from the polymer backbone, as confirmed by differential scanning calorimetry. The potential for the utilization of this polymer as a thermally removable adhesive was demonstrated by a simple adhesion test. This method provides access to thermally cleavable epoxy networks that can be quickly and irreversibly disintegrated into nonvolatile components upon heating to a specified temperature. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4992–4997  相似文献   

7.
Segmented polymer networks with LCST‐behavior have been prepared by free radical initiated copolymerization of α,ω‐bis‐methacrylate terminated poly(methyl vinyl ether) (PMVE) with 2‐hydroxy ethyl methacrylate (HEMA) or butyl acrylate (BA). The PMVE bis‐macromonomers have been obtained via a semi‐continuous process by end‐capping the living cationic polymerization of methyl vinyl ether (MVE) with HEMA. The phase separation temperature can be varied by changing the PMVE/comonomer ratio. Incorporation of PMVE‐grafts in the hydrogels increases the rate of deswelling and improves the mechanical properties. The application of the segmented networks for thermo‐controllable solid phase extraction has been demonstrated by their thermosensitive adsorption behavior of toluene from a water solution.  相似文献   

8.
A model is presented for the simulation of the structuration of polymer particles under conditions in which the new polymer chains are compatible with the polymer previously formed. The model involves the calculation of the monomer concentration gradients within the particles due to discrepancies in thermodynamic interactions between the monomer and the different polymers present in each part of the polymer particle. In addition, the distribution of free radicals in the latex particle is taken into account. This distribution results from the anchoring of the hydrophilic end-group of the growing polymer chain on the surface of the particle. The model was applied to the simulation of the polymerization of vinyl acetate on a butyl acrylate–vinyl acetate copolymer seed. It was found that the development of the particle morphology was mainly due to the profile of concentration of radicals in the particle. On the other hand, the effect of the monomer–polymer thermodynamic interactions on the particle morphology was found to be negligible. However, it has to be pointed out that this is because, for the system studied, the interaction parameters of vinyl acetate with polyvinyl acetate and polybutyl acrylate are nearly identical.  相似文献   

9.
Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analysis revealed that the HCl–vinyl ether adduct/SnCl4/n‐Bu4NCl initiating system induced living cationic polymerization of isobutyl vinyl ether in CH2Cl2 at ?78 °C, that is, the well‐resolved spectra demonstrated that the produced polymers consist of only one series of polymers carrying one initiator fragment at the α end and one methoxy group originated from quenching with methanol at the ω end. The polymer molecular weight as well as the terminal structure were unchanged even when the reaction mixtures were kept unquenched at ?78 °C for an interval of more than five times longer than the reaction period after complete consumption of monomer, which indicates the long lifetime of the living end even under such starved conditions. In contrast, the polymers obtained at a higher temperature, ?15 °C, showed an additional minor series of polymers formed via proton initiation, originating from adventitious water. Under the starved conditions, other side reactions occurred to generate minor series of polymers with an aldehyde ω end or a diisobutyl acetal ω end. Rather surprisingly, however, unsaturated C?C end groups were not detected, which means the absence of β‐proton elimination under these conditions. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1249–1257, 2001  相似文献   

10.
A supramolecular cross‐linked cross‐linker, capable of introducing rotaxane cross‐links to vinyl polymers, has been developed for the rational synthesis of polyrotaxane networks. The experimental results reveal that the combination of an oligocyclodextrin (OCD) and a terminal bulky group‐tethering macromonomer (TBM) forms a polymer‐network structure having polymerizable moieties through supramolecular cross‐linking. Radical polymerization of a variety of typical vinyl monomers in the presence of the vinylic supramolecular cross‐linker (VSC) afforded the corresponding vinyl polymers cross‐linked through the rotaxane cross‐links (RCP) as transparent stable films in high yields under both photoinitiated and thermal polymerization conditions. A poly(N,N‐dimethylacrylamide)‐based hydrogel synthesized by using VSC, RCPDMAAm, displayed a unique mechanical property. The small‐angle X‐ray scattering (SAXS) results, indicating patterns characteristic of a polyrotaxane network, clearly suggested the presence and role of the rotaxane cross‐links. The confirmation of the introduction of rotaxane‐cross‐links into vinyl polymers strongly reveals the significant usefulness of VSC.  相似文献   

11.
A versatile method was introduced to prepare cyclic polymers from both conjugated and unconjugated vinyl monomers. It was developed on the combination of the RAFT polymerization and the self‐accelerating double strain‐promoted azide‐alkyne click (DSPAAC) reaction. In this approach, a switchable chain transfer agent 1 was designed to have hydroxyl terminals and a functional pyridinyl group. The protonation and deprotonation of pyridinyl group endowed the chain transfer agent 1 with a switchable control capability to RAFT polymerization of both conjugated and unconjugated vinyl monomers. Based on this, RAFT polymerization and the following hydroxyl end group modification were used to prepare various azide‐terminated linear polymers including polystyrene, poly(N‐vinylcarbazole), and polystyrene‐block‐poly(N‐vinylcarbazole). Using sym‐dibenzo‐1,5‐cyclooctadiene‐3,7‐diyne (DBA) as small linkers, the corresponding cyclic polymers were then prepared via the DSPAAC reaction between DBA and azide terminals of the linear precursors. Due to the self‐accelerating property of DSPAAC reaction, this bimolecular ring‐closing reaction could efficiently produce the pure cyclic polymers using excess molar amounts of DBA to linear polymer precursors. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1811–1820  相似文献   

12.
Two novel dendritic macromonomers 7 and 8 functionalized with electroactive conjugated thiophene oligomers were synthesized by stepwise cross‐coupling reactions and the introduction of a vinyl group at the focal point. Both macromonomers were polymerized into dendronized polymers 9 and 10 by using a radical polymerization method. The photophysical and redox behaviors of dendronized polymers 9 and 10 are significantly different from those of the corresponding macromonomers. This difference may result from the spatial overlapping of thiophene dendrons through π–π interactions when the dendrons are connected to a polymer backbone. The dendronized polymers can organize into large‐area two‐dimensional sheets with a thickness of 4.8 nm. Polymer 9 , which has all‐dendritic thiophene side chains, exhibited enhanced conductivity by partial doping with iodine or nitrosonium tetrafluoroborate (NOBF4). The novel amphiphilic dendronized polymer 15 was synthesized by the atom‐transfer radical polymerization of macromonomer 7 from a poly(ethylene glycol) (PEG) macroinitiator and was found to have a self‐organized structure in water.  相似文献   

13.
Sequential living cationic polymerization of octadecyl vinyl ether (ODVE) and methyl vinyl ether (MVE) was used for the preparation of amphiphilic ABA‐type block copolymers. The polymerization of ODVE was initiated with the trimethyl silyl iodide/1,1,3,3‐tetramethoxy propane/ZnI2 system at 0°C in toluene. The living bifunctional polyODVE thus obtained was used as initiator for the polymerization of MVE. Below the LCST of polyMVE (37°C), the copolymers are amphiphiles. Above the LCST of polyMVE, the polyMVE‐blocks become hydrophobic and the amphiphilic nature of the block copolymer is lost. This was demonstrated by using the block copolymers as emulsifiers for water/decane mixtures. The emulsions were stable for several hours at room temperature, while the emulsion stability decreased to about 30 seconds at 40°C. PolyMVE‐α,ω‐bis‐methacrylates were obtained by end‐capping of living bifunctional polyMVE with 2‐hydroxyethyl methacrylate (HEMA). Copolymerization of these bis‐macromers with HEMA leads to segmented networks. The networks showed a reversible swelling/deswelling behavior in water as a function of temperature. This is caused by a change of the hydrophilicity of the polyMVE segments in the networks. Hexa(chloromethyl)melamine, combined with zinc chloride was found to be an efficient hexafunctional initiator for the living cationic polymerization of vinyl ethers. This simple initiating system opens new ways for the synthesis of endgroup‐functionalized star‐shaped poly(vinyl ethers).  相似文献   

14.
The surface of silica was modified by mercaptopropyl, chloropropyl, aminopropyl, and methacryloxypropyl groups by the treatment of silica with the corresponding silane coupling agents, and the effects of functional groups on the surface on the polymerization of vinyl monomers initiated by benzoyl peroxide or 2,2-azobisisobutyronitrile were investigated. Although the rate of the polymerization of vinyl monomers in the presence of silica was almost equal to that in the absence of silica, a part of polymer formed was grafted onto silica surface. The polymerization was considerably retarded in the presence of these functionalized silicas and the corresponding polymers were effectively grafted onto the surface. The molecular weight of ungrafted polymer formed in the presence of the functionalized silica was lower than that formed in the presence of unmodified silica. This indicates that the chain transfer reaction of growing polymer radical to functionalized silica surface forms radicals on the surface, which then couples with growing polymer radical and/or reinitiates the polymerization to give rise to the grafting of polymers onto the surface. In the case of silica having methacryloxypropyl groups, the grafting based on the copolymerization of vinyl monomer with the surface methacryloxypropyl groups was considered to successfully proceed.  相似文献   

15.
Vinyl chloride, vinyl fluoride, and tetrafluoroethylene were polymerized in a radio frequency electric glow discharge. It was found that when compared with the unhalogenated simple hydrocarbons, the rates of polymer deposition are in the order vinyl chloride, acetylene, tetrafluoroethylene, vinyl fluoride, ethylene. This observation can be rationalized by considering the ease with which free radical and unsaturated species can be formed in the plasma. IR spectra show that the structures of plasma-polymerized vinyl chloride and vinyl fluoride are in many respects similar to the plasma-polymerized hydrocarbon. The spectrum of plasma-polymerized tetrafluoroethylene, however, does not resemble that of conventional polytetrafluoroethylene. Addition of dichlorodifluoromethane to the monomer stream dramatically increased the polymer deposition rate; the effect is more subdued for chloromethane and is negligible for tetrafluoromethane. Elemental analysis indicates that little of the added halogens is present in the resultant polymers. Thus the halogenated compounds appear to act as a gas phase catalyst for the plasma polymerization of hydrocarbons.  相似文献   

16.
The effective grafting of vinyl polymers onto an ultrafine silica surface was successfully achieved by the photopolymerization of vinyl monomers initiated by the system consisting of trichloroacetyl groups on the surface with Mn2(CO)10 under UV irradiation at 25 °C. The introduction of trichloroacetyl groups onto the surface of silica was achieved by the reaction of trichloroacetyl isocyanate with surface amino groups, which were introduced by the treatment of silica with 3‐aminopropyltriethoxysilane. During the polymerization, the corresponding polymers were effectively grafted onto the surface, based on the propagation of polymer from surface radicals formed by the interaction of trichloroacetyl groups and Mn2(CO)10. The percentage of poly(methyl methacrylate) grafting onto the silica reached 714.6% after 90 min. The grafting efficiency (proportion of grafted polymer to total polymer formed) in the polymerization of methyl methacrylate was very high, about 80%, indicating the depression of formation of ungrafted polymer. Polymer‐grafted silica gave a stable colloidal dispersion in good solvents for grafted polymer. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2157–2163, 2001  相似文献   

17.
Linear (co)polymers and dimethacrylate‐end‐linked polymer networks of methyl methacrylate with 2‐(dimethylamino)ethyl methacrylate, cleavable in the middle of the polymer chain, either under thermolysis or alkaline hydrolysis conditions, were prepared via atom transfer radical polymerization (ATRP) using a specially designed bifunctional degradable initiator. This initiator was 2,6‐pyridinediethanol di(2‐bromo‐2‐methyl propanoate) (PyDEDBrMeP), bearing two 2‐(pyridin‐2‐yl)ethyl ester moieties, known for their thermal and hydrolytic (alkaline conditions) lability. As a control, a more stable bifunctional ATRP initiator, 2,6‐pyridinedimethanol di(2‐bromo‐2‐methyl propanoate) (PyDMDBrMeP), was also synthesized together with the corresponding linear polymers and polymer networks prepared from it. Thermal or hydrolytic treatment of the polymers prepared using PyDEDBrMeP led to a reduction in the molecular weights of the linear polymers by a factor of two, and to the conversion of the polymer networks to soluble branched (star) structures, consistent with the expected cleavage of the initiator residue located in the middle of the polymer chain. Thermal treatment of the polymers prepared using PyDMDBrMeP did not affect their molecular weight due to the thermal stability of the (pyridin‐2‐yl)methyl ester group, while treatment under alkaline hydrolysis conditions resulted in complete cleavage, similar to the PyDEDBrMeP‐prepared polymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2342–2355  相似文献   

18.
A straightforward, novel strategy based on the in situ functionalization of polymers prepared by nitroxide‐mediated polymerization (NMP), for the use as an extension toward block copolymers and post‐polymerization modifications, has been investigated. The nitroxide end group is exchanged for a thiocarbonylthio end group by a rapid transfer reaction with bis(thiobenzoyl) disulfide to generate in situ reversible addition–fragmentation chain transfer (RAFT) macroinitiators. Moreover, not only have these macroinitiators been used in chain extension and block copolymerization experiments by the RAFT process but also a thiol‐terminated polymer is synthesized by aminolysis of the RAFT end group and subsequently reacted with dodecyl vinyl ether by thiol‐ene chemistry.  相似文献   

19.
赵优良 《高分子科学》2010,28(5):819-828
<正>A series of 3-arm ABC and AA'B and 4-arm ABCD,AA'BC and AA′A″B heteroarm star polymers comprising one poly(4-methylphenyl vinyl sulfoxide) segment and other segments such as polystyrene,poly(α-methylstyrene), poly(4-methoxystyrene) and poly(4-trimethylsilylstyrene) were synthesized by living anionic polymerization based on diphenylethylene(DPE) chemistry.The DPE-functionalized polymers were synthesized by iterative methodology,and the objective star polymers were prepared by two distinct methodologies based on anionic polymerization using DPE-functionalized polymers.The first methodology involves an addition reaction of living anionic polymer with excess DPE-functionalized polymer and a subsequent living anionic polymerization of 4-methylphenyl vinyl sulfoxide(MePVSO) initiated from the in situ formed polymer anion with two or three polymer segments.The second methodology comprises an addition reaction of DPE-functionalized polymer with excess sec-BuLi and a following anionic polymerization of MePVSO initiated from the in situ formed polymer anion and 3-methyl-1,1-diphenylpentyl anion as well.Both approaches could afford the target heteroarm star polymers with predetermined molecular weight,narrow molecular weight distribution (M_w/M_n1.03) and desired composition,evidenced by SEC,~1H-NMR and SLS analyses.These polymers can be used as model polymers to investigate structure-property relationships in heteroarm star polymers.  相似文献   

20.
The living cationic polymerization of vinyl ethers has been used to prepare a number of new polymers with special properties. Sequential polymerization of the hydrophilic methyl vinyl ether (MVE) and the hydrophobic octadecyl vinyl ether (ODVE) has lead to amphiphilic block-copolymers with emulsifying properties for water/decane mixtures. Poly(vinyl-ether) macromonomers were obtained by end-capping of living polymers with hydroxyethyl acrylate. Copolymerization of polyODVE-macromonomer with usual acrylates lead to highly branched hydrophobic polymers. When the end-capping was performed with bifunctionally living polymers, the corresponding “bis-macromonomers” were obtained. Copolymerization of such bis-macromonomers with styrene or butyl acrylate, leads to the formation of segmented polymer networks. In the case of polyODVE-poly(butyl acrylate), these networks showed a pronounced phase separation. Due to the crystallinity of the polyODVE domains, these materials showed shape memory properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号