首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Elimination of pulmonary Pseudomonas aeruginosa (PA) infections is challenging to accomplish with antibiotic therapies, mainly due to resistance mechanisms. Quorum sensing inhibitors (QSIs) interfering with biofilm formation can thus complement antibiotics. For simultaneous and improved delivery of both active agents to the infection sites, self-assembling nanoparticles of a newly synthesized squalenyl hydrogen sulfate (SqNPs) were prepared. These nanocarriers allowed for remarkably high loading capacities of hydrophilic antibiotic tobramycin (Tob) and a novel lipophilic QSI at 30 % and circa 10 %, respectively. The drug-loaded SqNPs showed improved biofilm penetration and enhanced efficacy in relevant biological barriers (mucin/human tracheal mucus, biofilm), leading to complete eradication of PA biofilms at circa 16-fold lower Tob concentration than Tob alone. This study offers a viable therapy optimization and invigorates the research and development of QSIs for clinical use.  相似文献   

2.
A series of highly extended π‐conjugated ladder‐type oligo(p‐phenylene)s containing up to 10 phenyl rings with (L)‐Ph(n)‐NPh (n=7–10) or without diphenylamino endcaps (L)‐Ph(n) (n=7 and 8) were synthesized and investigated for their multiphoton absorption properties for frequency upconverted blue ASE/lasing. Extremely large two‐photon absorption (2PA) cross‐sections and highly efficient 2PA ASE/lasing with ultralow threshold were achieved. (L)‐Ph(10)‐NPh exhibits the highest intrinsic 2PA cross‐section of 3643 GM for a blue emissive organic fluorophore reported so far. The record‐high 2PA pumped ASE/lasing efficiency of 2.06 % was obtained by un‐endcapped oligomer, (L)‐Ph(8) rather than that with larger σ2, suggesting that a molecule with larger σ2 is not guaranteed to exhibit higher η2. All of these oligomers exhibit exceptionally ultralow 2PA pumped ASE/lasing thresholds, among which the lowest 2PA pumped threshold of circa 0.26 μJ was achieved by (L)‐Ph(10)‐NPh.  相似文献   

3.
The galactopeptide dendrimer GalAG2 ((β‐Gal‐OC6H4CO‐Lys‐Pro‐Leu)4(Lys‐Phe‐Lys‐Ile)2Lys‐His‐Ile‐NH2) binds strongly to the Pseudomonas aeruginosa (PA) lectin LecA, and it inhibits PA biofilms, as well as disperses already established ones. By starting with the crystal structure of the terminal tripeptide moiety GalA‐KPL in complex with LecA, a computational mutagenesis study was carried out on the galactotripeptide to optimize the peptide–lectin interactions. 25 mutants were experimentally evaluated by a hemagglutination inhibition assay, 17 by isothermal titration calorimetry, and 3 by X‐ray crystallography. Two of these tripeptides, GalA‐KPY (dissociation constant (KD)=2.7 μM ) and GalA‐KRL (KD=2.7 μM ), are among the most potent monovalent LecA ligands reported to date. Dendrimers based on these tripeptide ligands showed improved PA biofilm inhibition and dispersal compared to those of GalAG2 , particularly G2KPY ((β‐Gal‐OC6H4CO‐Lys‐Pro‐Tyr)4(Lys‐Phe‐Lys‐Ile)2Lys‐His‐Ile‐NH2). The possibility to retain and even improve the biofilm inhibition in several analogues of GalAG2 suggests that it should be possible to fine‐tune this dendrimer towards therapeutic use by adjusting the pharmacokinetic parameters in addition to the biofilm inhibition through amino acid substitutions.  相似文献   

4.
Bacteria reside within biofilms at the infection site, making them extremely difficult to eradicate with conventional wound care products. Bacteria use quorum sensing (QS) systems to regulate biofilm formation, and QS inhibitors (QSIs) have been proposed as promising antibiofilm agents. Despite this, few antimicrobial therapies that interfere with QS exist. Nontoxic hydroxypropyl‐β‐cyclodextrin‐functionalized cellulose gauzes releasing a burst of the antibiotic vancomycin and the QSI hamamelitannin are developed, followed by a sustained release of both. The gauzes affect QS and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro model of chronic wound infection and can be considered as candidates to be used to prevent wound infection as well as treat infected wounds.

  相似文献   


5.
Polyamide‐6 (PA6)/montmorillonite (MMT) nanocomposites toughened with maleated styrene/ethylene butylene/styrene (SEBS‐g‐MA) were prepared via melt compounding. Before melt intercalation, MMT was treated with an organic surfactant agent. Tensile and impact tests revealed that the PA6/4% MMT nanocomposite fractured in a brittle mode. The effects of SEBS‐g‐MA addition on the static tensile and impact properties of PA6/4% MMT were investigated. The results showed that the SEBS‐g‐MA addition improved the tensile ductility and impact strength of the PA6/4% MMT nanocomposite at the expenses of its tensile strength and stiffness. Accordingly, elastomer toughening represents an attractive route to novel characteristics for brittle clay‐reinforced polymer nanocomposites. The essential work of fracture (EWF) approach under impact drop‐weight conditions was used to evaluate the impact fracture toughness of nanocomposites toughened with an elastomer. Impact EWF measurements indicated that the SEBS‐g‐MA addition increased the fracture toughness of the PA6/4% MMT nanocomposite. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 585–595, 2005  相似文献   

6.
Antimicrobial polyamide (PA) received much attention for the demand of packaging and biomedical fields. In this paper, an antimicrobial PA6 membrane was prepared via a surface chemical reaction. A highly effective antibacterial component (PHMG‐E) with terminal epoxy group was firstly synthesized via a reaction between polyhexamethylene guanidine hydrochloride (PHMG) and ethylene glycol diglycidyl ether (EGDE). Then, PHMG‐E was bonded on the surface of PA6 membrane with secondary amine reduced by borane‐tetrahydrofuran (BH3‐THF). The antimicrobial rates of surface‐modified PA6 membrane (PA6‐PHMG) against Escherichia coli and Staphylococcus aureus were both higher than 99.99%, and the PHMG was non‐leaching due to the chemical bonding. The hydrophilicity of antibacterial PA6 membrane was also significantly improved and the mechanical performance became better.  相似文献   

7.
Quorum sensing inhibitors (QSIs) are promising alternatives to antibiotics, but they are discharged into the environment after their use cycle. This poses joint effects on the organisms in the environment. Therefore, it is of great importance to study the combined toxicities of QSIs and antibiotics. In this study, we investigated the single and combined toxicities of four potential QSIs and 11 sulfonamides (SAs) on Escherichia coli. The results revealed that the single toxicities of SAs were greater than those of QSIs, and the toxicities were found positively related to the binding energies (Ebind) with their target proteins, for both antibiotics and QSIs. The combined toxicities of the binary mixtures were observed to be either antagonism or addition. The antagonism could be explained by the phenomenon that QSIs changed SAs molecules into ionic forms, preventing the SA molecules entering the bacteria. Furthermore, it was found that the ratios of the effective concentration (the actual concentration involved in the interaction with the proteins) in the antagonistic cases were higher than those in the additive cases. This study would benefit both rational use of the drug combination and ecological risk assessment of antibiotics and QSIs in the real environment.  相似文献   

8.
Agents capable of eradicating bacterial biofilms are of great importance to human health as biofilm‐associated infections are tolerant to our current antibiotic therapies. We have recently discovered that halogenated quinoline (HQ) small molecules are: 1) capable of eradicating methicillin‐resistant Staphylococcus aureus (MRSA), methicillin‐resistant Staphylococcus epidermidis (MRSE) and vancomycin‐resistant Enterococcus faecium (VRE) biofilms, and 2) synthetic tuning of the 2‐position of the HQ scaffold has a significant impact on antibacterial and antibiofilm activities. Here, we report the chemical synthesis and biological evaluation of 39 HQ analogues that have a high degree of structural diversity at the 2‐position. We identified diverse analogues that are alkylated and aminated at the 2‐position of the HQ scaffold and demonstrate potent antibacterial (MIC≤0.39 μm ) and biofilm eradication (MBEC 1.0–93.8 μm ) activities against drug‐resistant Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecium strains while demonstrating <5 % haemolysis activity against human red blood cells (RBCs) at 200 μm . In addition, these HQs demonstrated low cytotoxicity against HeLa cells. Halogenated quinolines are a promising class of antibiofilm agents against Gram‐positive pathogens that could lead to useful treatments against persistent bacterial infections.  相似文献   

9.
A series of novel poly(urethane amide) films were prepared by the reaction of a polyurethane (PU) prepolymer and a soluble polyamide (PA) containing aliphatic hydroxyl groups in the backbone. The PU prepolymer was prepared by the reaction of polyester polyol and 2,4‐tolylenediisocyanate and then was end‐capped with phenol. Soluble PA was prepared by the reaction of 1‐(m‐aminophenyl)‐2‐(p‐aminophenyl)ethanol and terephthaloyl chloride. The PU prepolymer and PA were blended, and the clear, transparent solutions were cast on glass substrates; this was followed by thermal treatments at various temperatures to produce reactions between the isocyanate group of the PU prepolymer and the hydroxyl group of PA. The opaque poly(urethane amide) films showed various properties, from those of plastics to those of elastomers, depending on the ratio of the PU and PA components. Dynamic mechanical analysis showed two glass‐transition temperatures (Tg's), a lower Tg due to the PU component and a higher Tg due to the PA component, suggesting that the two polymer components were phase‐separated. The rubbery plateau region of the storage modulus for the elastic films was maintained up to about 250 °C, which is considerably higher than for conventional PUs. Tensile measurements of the elastic films of 90/10 PU/PA showed that the elongation was as high as 347%. This indicated that the alloying of PU with PA containing aliphatic hydroxyl groups in the backbone improved the high‐temperature properties of PU and, therefore, enhanced the use temperature of PU. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3497–3503, 2002  相似文献   

10.
Polymicrobial biofilm‐associated implant infections present a challenging clinical problem. Through modifications of lyophilized chitosan sponges, degradable drug delivery devices for antibiotic solution have been fabricated for prevention and treatment of contaminated musculoskeletal wounds. Elution of amikacin, vancomycin, or a combination of both follows a burst release pattern with vancomycin released above minimum inhibitory concentration for Staphylococcus aureus for 72 h and amikacin released above inhibitory concentrations for Pseudomonas aeruginosa for 3 h. Delivery of a vancomycin, amikacin, or a combination of both reduces biofilm formation on polytetrafluoroethylene catheters in an in vivo model of contamination. Release of dual antibiotics from sponges is more effective at preventing biofilm formation than single‐loaded chitosan sponges. Treatment of pre‐formed biofilm with high‐dose antibiotic release from chitosan sponges shows minimal reduction after 48 h. These results demonstrate infection‐preventive efficacy for antibiotic‐loaded sponges, as well as the need for modifications in the development of advanced materials to enhance treatment efficacy in removing established biofilm.

  相似文献   


11.
Combining the excellent mechanical strengths of polyamide 6 (PA6) with the low water absorption of poly(butylene terephthalate) (PBT) was supposed to be a feasible way to prepare a high comprehensive performance material. However, the poor compatibility between PA6 and PBT resulted in low‐notched impact strength of PA6/PBT blends. Poly(n‐butyl acrylate)/poly(methyl methacrylate‐co‐methacrylic acid) (PBMMA), a core‐shell structured modifier with controlled particle sizes, was prepared by seed emulsion polymerization and confirmed by Transmission electron microscope (TEM). The PBMMA particles as toughening modifier and compatilizer were employed to toughen PA6/PBT blends. The notched impact strength of the PA6/PBT blends was significantly increased and the water absorption was reduced with the addition of PBMMA particles. With 23.0 wt% modifier loading, the notched impact strength of the blends was 25.66 kJ/m2, which was 4.04 times higher than that of pure PA6/PBT. Meanwhile, the water absorption of the blends was only 1.3%, dropping 53.6% compared with pure PA6 and reducing by 26.6% than PA6/PBT. Scanning electron microscope results showed that the PBMMA particles were dispersed in the PA6/PBT blends homogeneously, and the toughening mechanism was the cavitation of rubber particles and shear yielding of the matrix. Thermo‐gravimetric analysis analysis demonstrated that the compatibility between PA6 and PBT was improved with the addition of core‐shell PBMMA particles. The core‐shell particles could be used as an effective modifier to achieve the high toughness and low water absorption for PA6/PBT blends. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Hydration in a new semiaromatic polyamide, named polyamide 9‐T (PA9‐T), a copolymer of terephthalic acid with n‐ and iso‐nonanediamines, is studied by dynamic viscoelastic analysis under controlled humidity conditions and wide‐angle X‐ray diffraction analysis in comparison with common polyamide nylon 6. The storage modulus of PA9‐T is retained at up to 60 °C with increasing humidity, then dropped with further increases in temperature past 70 °C. The decrease in mechanical properties at 70 °C due to moisture uptake is found to be substantially improved by annealing to develop molecular packing and/or crystallization. In contrast, the storage modulus of very highly crystallized (50% crystallinity) nylon 6 decreases markedly with humidity at low temperatures such as 20 °C. Thus, PA9‐T retains its mechanical properties in humid atmospheres at much higher temperatures than nylon 6. The crystalline X‐ray diffraction peaks for nylon 6 corresponding to (002) + (202) of the α form shift upon absorption of moisture, speculated to be due to the weakening of hydrogen bonds and the subsequent conformational disordering of the chains. Unlike nylon 6, the crystalline peaks of PA9‐T do not shift due to moisture uptake. This is considered to be attributable to that the long aliphatic chain in PA9‐T forms the large hydrophobic domain, rendering PA9‐T less hygroscopic than nylon 6. Additionally, strong hydrogen bonds formed by terephthalamide residues together with a strong stacking force of phenylene groups may also repel water, preventing moisture bind with the amide groups of PA9‐T crystals. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1640–1648, 2005  相似文献   

13.
Blending polytetrafluoroethylene (PTFE) to polyamide‐6 (PA6) with and without maleic anhydride‐grafted polytetrafluoroethylene (PTFE‐g‐MA) was produced in a corotating twin screw extruder, where PTFE acts as the polymer matrix and PA6 as the dispersed phase. The effect of PTFE‐g‐MA on the tensile properties and tribological propertiesof PTFE/PA6 polymer blends is studied. Results show that the structural stability and morphology of the blends were greatly improved by PTFE‐g‐PA6 grafted copolymers, which were formed by the in situ reaction of anhydride groups with the amino end groups of PA6 during reactive extrusion forming an imidic linkage. The presence of PTFE‐g‐PA6 in the PTFE continuous phase improves the interfacial adhesion, as a result of the creation of an interphase that was formed by the interaction between the formed PTFE‐g‐PA6 copolymer in situ and both phases. Compared with thePTFE/PA6 without PTFE‐g‐MA, the PTFE/PA6 with PTFE‐g‐MAhad the lowest friction coefficient and wear under given applied load and reciprocating sliding frequency. The interfacial compatibility of the composite prevented the rubbing‐off of PA6, accordingly improved the friction and wear properties of the composite. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The hierarchical assembly of gold nanoparticles (GNPs) allows the localized surface plasmon resonance peaks to be engineered to the near‐infrared (NIR) region for enhanced photothermal therapy (PTT). Herein we report a novel theranostic platform based on biodegradable plasmonic gold nanovesicles for photoacoustic (PA) imaging and PTT. The disulfide bond at the terminus of a PEG‐b‐PCL block‐copolymer graft enables dense packing of GNPs during the assembly process and induces ultrastrong plasmonic coupling between adjacent GNPs. The strong NIR absorption induced by plasmon coupling and very high photothermal conversion efficiency (η=37 %) enable simultaneous thermal/PA imaging and enhanced PTT efficacy with improved clearance of the dissociated particles after the completion of PTT. The assembly of various nanocrystals with tailored optical, magnetic, and electronic properties into vesicle architectures opens new possibilities for the construction of multifunctional biodegradable platforms for biomedical applications.  相似文献   

15.
Conventional antibiotics are ineffective against non‐replicating bacteria (for example, bacteria within biofilms). We report a series of halogenated phenazines (HP), inspired by marine antibiotic 1 , that targets persistent bacteria. HP 14 demonstrated the most potent biofilm eradication activities to date against MRSA, MRSE, and VRE biofilms (MBEC=0.2–12.5 μM), as well as the effective killing of MRSA persister cells in non‐biofilm cultures. Frontline MRSA treatments, vancomycin and daptomycin, were unable to eradicate MRSA biofilms or non‐biofilm persisters alongside 14 . HP 13 displayed potent antibacterial activity against slow‐growing M. tuberculosis (MIC=3.13 μM), the leading cause of death by bacterial infection around the world. HP analogues effectively target persistent bacteria through a mechanism that is non‐toxic to mammalian cells and could have a significant impact on treatments for chronic bacterial infections.  相似文献   

16.
Conventional antibiotics are ineffective against non‐replicating bacteria (for example, bacteria within biofilms). We report a series of halogenated phenazines (HP), inspired by marine antibiotic 1 , that targets persistent bacteria. HP 14 demonstrated the most potent biofilm eradication activities to date against MRSA, MRSE, and VRE biofilms (MBEC=0.2–12.5 μM), as well as the effective killing of MRSA persister cells in non‐biofilm cultures. Frontline MRSA treatments, vancomycin and daptomycin, were unable to eradicate MRSA biofilms or non‐biofilm persisters alongside 14 . HP 13 displayed potent antibacterial activity against slow‐growing M. tuberculosis (MIC=3.13 μM), the leading cause of death by bacterial infection around the world. HP analogues effectively target persistent bacteria through a mechanism that is non‐toxic to mammalian cells and could have a significant impact on treatments for chronic bacterial infections.  相似文献   

17.
The effect of various benzenesulfonamide (BSA) plasticizers on the amorphous phase of semicrystalline polydodecamide (PA‐12) has been investigated. MonoBSAs appear as efficient glass‐transition temperature (Tg) depressors because of their miscibility with the host polyamide (PA), low glass transition, and small molecule size. PA‐12's Tg shifts from 50 to about 0 °C at 20 mol % of the most efficient molecules. Comparatively, the more bulky bisBSAs appear to induce less important absolute Tg decreases (30 K at 20 mol %), although these appear as more important when considering the polymer Tg to plasticizer Tg difference. This unexpected observation could be ascribed to both the amide‐sulfonamide interactions and the sterically generated disorder within the polyamide because of the plasticizer molecule's size. Phase‐separation behavior of BSA plasticizers within the host PA has also been investigated. Crystalline phenyl‐SO2NH2, for instance, dephased beyond 20 mol % in PA‐12, forming distinct 1–2 micrometer wide crystalline domains as a result of its high propensity to crystallize upon cooling from the melt. By contrast, slow crystallizing N,N‐dimethylBSA, which lacks any specific interaction for PA‐12, remained nevertheless dispersed at a molecular level (metastable state, no phase separation) when vitrification of the host PA‐12 amorphous phase occurred on cooling. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2208–2218, 2002  相似文献   

18.
Thiomarinol and mupirocin are assembled on similar polyketide/fatty acid backbones and exhibit potent antibiotic activity against methicillin‐resistant Staphylococcus aureus (MRSA). They both contain a tetrasubstituted tetrahydropyran (THP) ring that is essential for biological activity. Mupirocin is a mixture of pseudomonic acids (PAs). Isolation of the novel compound mupirocin P, which contains a 7‐hydroxy‐6‐keto‐substituted THP, from a ΔmupP strain and chemical complementation experiments confirm that the first step in the conversion of PA‐B into the major product PA‐A is oxidation at the C6 position. In addition, nine novel thiomarinol (TM) derivatives with different oxidation patterns decorating the central THP core were isolated after gene deletion (tmlF ). These metabolites are in accord with the THP ring formation and elaboration in thiomarinol following a similar order to that found in mupirocin biosynthesis, despite the lack of some of the equivalent genes. Novel mupirocin–thiomarinol hybrids were also synthesized by mutasynthesis.  相似文献   

19.
Highly toxic polyallylamine (PA) was reacted with a varying amount of a novel linker, 6‐(N,N,N′,N′‐tetramethylguanidinium chloride) hexanoic acid (Tmg‐HA), to prepare a series of tetramethylguanidinium‐PA (Tmg‐PA) polymers, which were used as vectors for gene transfection. The extent of attachment of the linker, Tmg‐HA, to the PA backbone was determined by 2,4,6‐trinitrobenzene sulfonic acid assay. The modified polymers (Tmg‐PAs), when complexed with pDNA, exhibited good condensation ability. The nanoparticles, so formed, were characterized by their size and zeta potential and were subsequently evaluated for their toxicity and transfection ability on various mammalian cells, viz., HeLa, CHO, and HEK 293 cells. Mobility shift assay revealed that on increasing the percent substitution of Tmg‐HA onto PA (from Tmg‐PA1 to Tmg‐PA6), relatively higher amounts of modified polymers were required to retard the mobility of a fixed amount of DNA. Besides, Tmg‐PA polymers provided sufficient protection (ca. 84–88%) to bound DNA against nucleases and one of the formulations, Tmg‐PA2 (ca. 15% substitution) displayed the highest transfection efficiency outcompeting the commercial transfection reagent, Lipofectamine? with minimal cytotoxicity. More impressively, the transfection efficiency increased despite recording a decrease in the buffering capacity of the grafted polymers suggesting that buffering capacity is not the sole parameter in determining the gene delivery efficiency of a vector system. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
The main objective of this work focused on the chemical modification of polyamide 12 (PA12) properties through the reaction with a hydride‐terminated polydimethylsiloxane (PDMS‐SiH). The investigated PA12/PDMS‐SiH blend was compatibilized by ruthenium derivative catalyzed hydrosilylation reaction in molten state. This original route enhanced interfacial adhesion and avoid PDMS‐SiH leaching phenomenon between the two immiscible phases. More specifically, the size of PDMS‐SiH domains in the blend decreased from around 4 μm to 800 nm and from 30 to 1 μm after compatibilization with 10 and 20 wt % PDMS‐SiH, respectively. For the best compatibilized PA12/PDMS‐SiH blend, the introduction of PDMS lowered the surface free energy and the PA12‐based blend turned from hydrophilic to hydrophobic behavior, as evidenced by the water contact angle measurements. Gas permeability and CO2/H2 and CO2/He gas selectivity were also improved with the increase in PDMS content. Besides, the mechanical properties were enhanced with 13% increase in Young's modulus after in situ compatibilization with 15 wt % PDMS‐SiH. Thermal stability was also improved after compatibilization as the initial degradation temperature of reactive blends obviously increased compared with nonreactive ones. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 978–988  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号