首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, projective synchronization of drive-response coupled dynamical network with delayed system nodes and coupling time-varying delay is investigated via impulsive control, where the scaling factors are different from each other. Different controllers are designed to achieve the projective synchronization: only impulsive control is used when the scaling factors need extra limitation, while an extra controller, that is, a simple linear feedback controller, is added when the scaling factors don??t need extra limitation. Based on the stability analysis of the impulsive functional differential equation, the sufficient conditions for achieving projective synchronization of such coupled network are established, and an estimate of the upper bound of impulsive intervals ensuring global exponential synchronization of drive-response coupled dynamical network is also given. Numerical examples on the time-delay Lorenz chaotic systems are presented finally to illustrate the effectiveness and advantage of the proposed synchronization criteria.  相似文献   

2.
In drive-response complex-variable systems, projective synchronization with respect to a real number, real matrix, or even real function means that drive-response systems evolve simultaneously along the same or inverse direction in a complex plane. However, in many practical situations, the drive-response systems may evolve in different directions with a constant intersection angle. Therefore, this paper investigates projective synchronization in drive-response networks of coupled complex-variable chaotic systems with respect to complex numbers, called complex projective synchronization (CPS). The adaptive feedback control method is adopted first to achieve CPS in a general drive-response network. For a special class of drive-response networks, the CPS is achieved via pinning control. Furthermore, a universal pinning control scheme is proposed via the adaptive coupling strength method, several simple and useful criteria for CPS are obtained, and all results are illustrated by numerical examples.  相似文献   

3.
This paper investigates the adaptive-impulsive projective synchronization of drive-response delayed complex dynamical networks with time-varying coupling, in which the weights of links between two connected nodes are time varying. By the stability analysis of the impulsive functional differential equation, the sufficient conditions for achieving projective synchronization are obtained, and a hybrid controller, that is, an adaptive feedback controller with impulsive control effects is designed. The numerical examples are presented to illustrate the effectiveness and advantage of the proposed synchronization criteria.  相似文献   

4.
Synchronization of nonlinear dynamical systems with complex variables has attracted much more attention in various fields of science and engineering. In this paper, the problem of parameter identification and adaptive impulsive synchronization for a class of chaotic (hyperchaotic) complex nonlinear systems with uncertain parameters is investigated. Based on the theories of adaptive control and impulsive control, a synchronization scheme is designed to make a class of chaotic and hyperchaotic complex systems asymptotically synchronized, and uncertain parameters are identified simultaneously in the process of synchronization. Particularly, the proposed adaptive–impulsive control laws for synchronization are simple and can be readily applied in practical applications. The synchronization of two identical chaotic complex Chen systems and two identical hyperchaotic complex Lü systems are taken as two examples to verify the feasibility and effectiveness of the proposed controllers and identifiers.  相似文献   

5.
Wu  Yongbao  Wang  Changda  Li  Wenxue 《Nonlinear dynamics》2019,95(2):1361-1377
Nonlinear Dynamics - This paper is concerned with the finite-time synchronization problem of coupled drive-response systems with time-varying delays via quantized adaptive aperiodically...  相似文献   

6.
This paper studies the practical adaptive synchronization of a class of uncertain chaotic systems in the drive-response framework. An adaptive response system is designed to practically synchronize a given drive chaotic system with uncertainties. An improved adaptation law on the upper bound of uncertainties is proposed to guarantee the boundedness of both the synchronization error and the estimated feedback coupling gains. The efficiency and effectiveness of the proposed approach is illustrated by computer simulation.  相似文献   

7.
In this paper, through designing some proper controllers and adaptive updating laws, the outer synchronization between drive-response networks with nonidentical topological structure and unknown parameters are achieved and the unknown parameters are identified under given assumption. Several sufficient conditions for achieving outer synchronization are derived. Numerical simulations are provided to verify the effectiveness of the proposed methods.  相似文献   

8.
In previous papers, the projective factors are always chosen as real numbers, real matrices, or even real-valued functions, which means the coupled systems evolve in the same or inverse direction simultaneously. However, in many practical situations, the drive-response systems may evolve in different directions with a constant intersection angle. Therefore, the projective synchronization with respect to a complex factor, called complex projective synchronization (CPS), should be taken into consideration. In this paper, based on Lyapunov stability theory, three typical chaotic complex dynamical systems are considered and the corresponding controllers are designed to achieve the complex projective synchronization. Further, an adaptive control method is adopted to design a universal controller for partially linear systems. Numerical examples are provided to show the effectiveness of the proposed method.  相似文献   

9.
This paper addresses a unified mathematical expression describing a class of chaotic systems, for which the problem of synchronization and anti-synchronization between different chaotic systems with fully uncertain parameters and different structure are studied. Based on the Lyapunov stability theory, a novel, simple, and systemic adaptive synchronization controller is designated, the analytic expression of the controller and the adaptive laws of parameters are developed. Moreover, the proposed scheme can be extended to anti-synchronize a class of chaotic systems. Two chaotic systems with different structure and fully uncertain parameters are employed as the examples to show the effectiveness of the proposed adaptive synchronization and anti-synchronization schemes. Additionally, the robustness and noise immunity of the adaptive synchronization scheme is investigated by measuring the mean squared error of the systems.  相似文献   

10.
A new fuzzy observer for lag synchronization is given in this paper. By investi- gating synchronization of chaotic systems, the structure of drive-response lag synchronization for fuzzy chaos system based on fuzzy observer is proposed. A new lag synchronization criterion is derived using the Lyapunov stability theorem, in which control gains are obtained under the LMI condition. The proposed approach is applied to the well-known Chen's systems. A simulation example is presented to illustrate its effectiveness.  相似文献   

11.
IntroductionInpractice ,thereexistmanyexamplesofimpulsivecontrolsystems (seeRefs.[1 ,2 ,3 ] ) .Recently ,impulsivecontrolhasbeenwidelyusedtostabilizeandsynchronizechaoticsystems(seeRefs.[4~ 1 5] ) .Forexample,thepredictivePoincarecontrol[4 ]andtheoccasionalproportionalfeedbackcontrol[5 ]aretwoimpulsivecontrolschemeswithvaryingimpulsiveintervals.Yangetal.inRefs.[7,1 1 ]studied ,respectively ,thestabilizationandsynchronizationofaclassofchaoticsystemscalledLorenzsystems .YangandChuainRef.[1 …  相似文献   

12.
Our main objective in this work is to investigate complete synchronization (CS) of n-dimensional chaotic complex systems with uncertain parameters. An adaptive control scheme is designed to study the synchronization of chaotic attractors of these systems. We applied this scheme, as an example, to study complete synchronization of chaotic attractors of two identical complex Lorenz systems. The adaptive control functions and the parameters estimation laws are calculated analytically based on the complex Lyapunov function. We show that the error dynamical systems are globally stable. Numerical simulations are computed to check the analytical expressions of adaptive controllers.  相似文献   

13.
A new fractional-order chaotic system with absolute value term is introduced. Some dynamical behaviors are investigated and analyzed. Furthermore, synchronization of this system is achieved by utilizing the drive-response method and the feedback method. The suitable parameters for achieving synchronization are studied. Both the theoretical analysis and numerical simulations show the effectiveness of the two methods.  相似文献   

14.
Bin Zhen  Jian Xu 《力学快报》2013,3(6):063004
Conditions for complete and lag synchronizations in drive-response systems are considered under the unified framework of generalized synchronization. The question is addressed that whether the synchronization conditions achieving complete synchronization is still valid for lag synchronization when the time delay of signal transmission between the drive and response systems increases from 0. Theoretical and numerical results show that whether the synchronization conditions is stable for the influence of the time delay of signal transmission depends on a particular form of equilibria of the drive and response systems. Furthermore, it seems that the less the number of the equilibria of the drive system, the more likely the synchronization conditions are stable for the time delay of signal transmission.  相似文献   

15.
The dynamics of differential system can be changed very obviously after inputting impulse signals. Previous studies show that the single chaotic system can be controlled to periodic motions using impulsive control method. It was well known that the dynamics of hyper-chaotic and coupled systems are very important and more complex than those of a single system. In this paper, particular impulsive control of the hyper-chaotic Lü system was proposed, which is with outer impulsive signals. It can be seen that such impulsive strategy can generate chaos from periodic orbit or control chaos to periodic orbit etc. For the first time, impulsive control induced effects on dynamics of coupled systems are considered in this paper, where the impulse effect has outer input signals. Many interesting and useful results are obtained. The coupled system can realize synchronization and its synchronization manifold can be changed with such impulsive control signals. Strict theories are given, and numerical simulations confirm the correctness of theoretical results.  相似文献   

16.
This paper investigates the drive-response synchronization in shape for a class of two-dimensional continuous systems of chaos. The shape of the chaotic attractor of the drive chaotic system is considered in this paper. Using the signed curvatures of plane curves to describe the shapes of trajectories for drive and response systems, the continuous controller for shape synchronization is synthesized based on the fundamental theorem on plane curves in classical differential geometry. The continuous controller synthesized can guarantee that the response system is synchronized with the drive chaotic system in shape. The shape synchronization is obtained in spite of different dimensions in drive and response systems. Finally, the Duffing oscillator is utilized as an illustrative example. Simulation results show that the method proposed in this paper is effective for the application of secure communication.  相似文献   

17.
Outer synchronization between the drive network and the response network has attracted much more attention in various fields of science and engineering. In this paper, mixed outer synchronization between two complex dynamical networks with nonidentical nodes and output coupling is investigated via impulsive hybrid control, that is, an adaptive feedback controller with impulsive control effects. Moreover, both the cases of complex networks without and with coupling delay are considered. According to the stability analysis of the impulsive functional differential equation, several sufficient conditions for the networks to achieve mixed outer synchronization are derived. Numerical examples are presented finally to illustrate the effectiveness and advantage of the proposed synchronization criteria.  相似文献   

18.
This work is devoted to investigating the complete synchronization of two identical delay hyperchaotic Lü systems with different initial conditions, and a simple complete synchronization scheme only with a single linear input is proposed. Based on the Lyapunov stability theory, sufficient conditions of synchronization are obtained for both linear feedback and adaptive control approaches. The problem of adaptive synchronization between two nearly identical delay hyperchaotic Lü systems with unknown parameters is also studied. A?single input adaptive synchronization controller is proposed, and the adaptive parameter update laws are developed. Numerical simulation results are presented to demonstrate the effectiveness of the proposed chaos synchronization scheme.  相似文献   

19.
Centrifugal flywheel governors are known as chaotic non-autonomous mechanical devices used for automatic control of the speed of engines. The main characteristic of them is avoiding the damage caused by sudden change of the load torques. In this paper, the problem of robust finite-time synchronization of centrifugal flywheel governor systems is studied. The effects of unknown parameters, model uncertainties, external noises, and input nonlinearities are fully taken into account. We propose some adaptive laws to overcome the side effects of the unknown parameters of the system on the synchronization performance. Then, a robust adaptive switching controller is introduced to synchronize centrifugal flywheel governors with nonlinear control inputs in a given finite time. The finite-time fast convergence property of the proposed scheme is analytically proved and numerically illustrated.  相似文献   

20.
The electromechanical gyrostat is a fourth-order nonautonomous system that exhibits very rich behavior such as chaos. In recent years, synchronization of nonautonomous chaotic systems has found many useful applications in nonlinear science and engineering fields. On the other hand, it is well known that the finite-time control techniques demonstrate good robustness and disturbance rejection properties. This paper studies the potential application of the finite-time control techniques for synchronization of nonautonomous chaotic electromechanical gyrostat systems in finite time. It is assumed that all the parameters of both drive and response systems are unknown parameters in advance. Moreover, the effects of dead-zone nonlinearities in the control inputs are also taken into account. Some adaptive controllers are introduced to synchronize two gyrostat systems in different scenarios within a given finite-time. Two illustrative examples are presented to demonstrate the efficiency and robustness of the proposed finite-time synchronization strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号