首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper investigates generalized outer synchronization between two uncertain dynamical networks with a novel feature that the couplings of each network are unknown functions. With nonlinear control schemes, two sufficient criteria for generalized outer synchronization with or without time delay are obtained by Lyapunov stability theory and Barbalat’s lemma. Our results are valid for many studies of the couplings inside each network being linear or nonlinear. Finally, numerical simulations are given to verify the effectiveness of the control schemes.  相似文献   

2.
The various cases of synchronization in two identical hyperchaotic Lorenz systems with time delay are studied. Based on Lyapunov stability theory, the sufficient conditions for achieving synchronization of two identical hyperchaotic Lorenz systems with time delay are derived, and a simple scheme only with a single linear controller is proposed. When the parameters in the response system are known, the alternating between complete synchronization and hybrid synchronization (namely, coexistence of antiphase and complete synchronization) is observed with the control feedback gain varying. Furthermore, when the parameters in the response system are unknown, for the same feedback controller, the complete synchronization and the hybrid synchronization can be obtained, respectively, as the associated parameters updated laws of the unknown parameters are chosen. Numerical simulation results are presented to demonstrate the proposed chaos synchronization scheme.  相似文献   

3.
In this paper, the outer synchronization between uncertain networks is investigated using the backstepping design. The adaptive laws of uncertain parameters and the structure of control input in the node of response network are determined based on the stability theory. The outer synchronization between networks can be realized only by putting a control input on one node of response network. Further, the effect of the synchronization principle is verified through a simulation experiment.  相似文献   

4.
In this paper, control synchronization between two chaotic systems governed by different formulas is studied. Based on the techniques of adaptive control and parameters modulation, the response system is controlled to coincide with the drive system without the prior knowledge of parameters. When synchronization is achieved, the unknown parameters of the drive system are well approximated simultaneously. The effect of control parameters on the degree of synchronization is also discussed.  相似文献   

5.
Synchronization and parameter identification of a unidirectional star-network constructed by discrete spatiotemporal chaos systems with unknown parameters are studied. The synchronization principle of the network and design method of parameter recognition law are introduced. The function to be determined in the parameter recognition law and the range of adjusting parameter are obtained based on Lyapunov stability theory. Not only global synchronization of the network is realized, but also the unknown parameters in spatiotemporal chaos systems at the nodes of the network are identified. Discrete laser spatiotemporal chaos model is taken as each node of the network, and simulation results show the effectiveness of the synchronization principle and parameter recognition law.  相似文献   

6.
This paper solves the problem of robust synchronization of nonlinear chaotic gyrostat systems in a given finite time. The parameters of both master and slave chaotic gyrostat systems are assumed to be unknown in advance. In addition, the gyrostat systems are disturbed by unknown model uncertainties and external disturbances. Suitable update laws are proposed to estimate the unknown parameters. Based on the finite-time control idea and update laws, appropriate control laws are designed to ensure the stabilization of the closed-loop system in finite time. The precise value of the convergence time is given. A numerical simulation demonstrates the applicability and efficiency of the proposed finite-time synchronization strategy.  相似文献   

7.
In this paper, we investigate the synchronization problems of delayed competitive neural networks with different time scales and unknown parameters. A simple and robust adaptive controller is designed such that the response system can be synchronized with a drive system with unknown parameters by utilizing Lyapunov stability theory and parameter identification. Our synchronization criteria are easily verified and do not need to solve any linear matrix inequality. This research also demonstrates the effectiveness of application in secure communication. Numerical simulations are carried out to illustrate the main results.  相似文献   

8.
This paper investigates the chaos synchronization of two bidirectionally coupled chaotic systems. In comparison with previous methods (identical bidirectionally coupled synchronization), the present control scheme is different bidirectionally coupled synchronization, which includes different complete bidirectionally coupled synchronization and different partial bidirectionally coupled synchronization. Based on the Lasalle invariance principle, adaptive schemes are designed to make two different bidirectionally coupled chaotic systems asymptotically synchronized, and unknown parameters are identified simultaneously in the process of synchronization. Theoretical analysis and numerical simulations are shown to verify the results.  相似文献   

9.
In this paper, the adaptive projective synchronization of dynamical network with distributed time delays is investigated. Network with unknown topology and network with both unknown topology and system parameters of node dynamics are considered respectively. Based on Lyapunov stability theory and LaSalle’s invariance principle, the sufficient conditions for achieving projective synchronization are obtained. Numerical examples are provided to show the effectiveness of the proposed method.  相似文献   

10.
This paper presents robust synchronization algorithms for the Rossler systems in the presence of unknown time-varying parameters. First, an adaptive synchronization algorithm based on the Lyapunov theory is introduced for identical Rossler systems with mismatched uncertainties. This method does not require a priori information regarding the bound of uncertainties. In addition, this technique is such that the states of the synchronization error system are uniformly ultimately bounded. Since in practice the parameters of the drive and response systems are not necessarily the same, two synchronization approaches are used for the drive and response systems with different parameters. In the first approach, a simple controller is designed for the nominal error system, as if there is no uncertainty in the system. The stability analysis is then investigated as the uncertainties are reintroduced, and it is shown that the size of the uncertainties directly affects the synchronization performance. To deal with this problem, an H controller is designed in which the effects of unknown bounded uncertainties can be attenuated at an appropriate level. It is shown that, using these two approaches, the Rossler systems can be synchronized effectively and the synchronization error is uniformly ultimately bounded. Numerical simulations confirm the effectiveness of the proposed methods.  相似文献   

11.
Modified function projective synchronization (MFPS), which generalizes many kinds of synchronization form, has received great attention recently. Based on the active control method and adaptive control technique, a general formula for designing the controllers is proposed to achieve adaptive MFPS, which corrects several incomplete results that have been reported recently. In addition, this paper derives the sufficient condition for parameter identification, which was not mentioned in much of the relevant literature concerning MFPS. Furthermore, we extend the MFPS scheme to the cases that the drive and response systems come with non-identical structures. The proposed method is both theoretically rigorous and practically feasible, which has the merits that it can not only achieve the full-state MFPS but also identify the fully unknown parameters in the synchronization process. The theoretical results are successfully applied to three typical illustrative cases: the adaptive MFPS of two identical 4-D hyperchaotic systems with unknown parameters in the response system, the adaptive MFPS between a 5-D hyperchaotic system and a 4-D hyperchaotic system with unknown parameters in the drive system and the adaptive MFPS between a 3-D chaotic system and a 4-D hyperchaotic system when the parameters in the drive system and response system are all unknown. For each case the controller functions and parameter update laws are well designed in detail. Moreover, the corresponding numerical simulations are presented, which agree well with the theoretical analysis.  相似文献   

12.
The complex nonlinear systems appear in many important fields of physics and engineering, which are very useful for cryptography and secure communication. This paper investigates adaptive generalized function projective synchronization (AGFPS) between two different dimensional chaotic complex systems with fully or partially unknown parameters via both reduced order and increased order. Based on the Lyapunov stability theorem and adaptive control technique, a general adaptive controller with corresponding parameter update rule is constructed to achieve AGFPS between two nonidentical chaotic complex systems with distinct orders, and identify the unknown parameters simultaneously. This scheme is then applied to obtain AGFPS between the hyperchaotic complex Lü system and the chaotic complex Lorenz system with fully unknown parameters, and between the uncertain chaotic complex Chen system and the uncertain hyperchaotic complex Lorenz system, respectively. Corresponding simulations results are performed to show the feasibility and effectiveness of the proposed synchronization method.  相似文献   

13.
In this paper, impulsive synchronization of drive-response complex-variable chaotic systems is investigated. The drive-response systems with known parameters is considered via impulsive control and adaptive scheme as well as systems with unknown parameters. Noticeably, adaptive strategy is adopted to relax the restriction on the impulsive interval, and the system parameters need not to be known beforehand. According to the Lyapunov stability theory, some synchronization criteria are derived and verified by several numerical simulations.  相似文献   

14.
This work is devoted to investigating the complete synchronization of two identical delay hyperchaotic Lü systems with different initial conditions, and a simple complete synchronization scheme only with a single linear input is proposed. Based on the Lyapunov stability theory, sufficient conditions of synchronization are obtained for both linear feedback and adaptive control approaches. The problem of adaptive synchronization between two nearly identical delay hyperchaotic Lü systems with unknown parameters is also studied. A?single input adaptive synchronization controller is proposed, and the adaptive parameter update laws are developed. Numerical simulation results are presented to demonstrate the effectiveness of the proposed chaos synchronization scheme.  相似文献   

15.
Synchronization between the driving network and the responding network (outer synchronization) has attracted increasing attention from various fields of science and engineering. In this paper, we address outer synchronization of complex networks with delays. Both the cases of coupling delay and node delay are considered. Employing the impulsive control method which is simple, efficient, low cost, and easy to implement in practical applications, we obtain some sufficient conditions of outer synchronization. It indicates that outer synchronization can be achieved if the maximal impulsive intervals are less than a critical value. Numerical simulations are also given to demonstrate the effectiveness of the proposed impulsive control scheme.  相似文献   

16.
Chaotic systems in practice are always influenced by some uncertainties and external disturbances. This paper investigates the problem of practical synchronization of fractional-order chaotic systems. Based on Lyapunov stability theory and a fractional-order differential inequality, a modified adaptive control scheme and adaptive laws of parameters are developed to robustly synchronize coupled fractional-order chaotic systems with unknown parameters and uncertain perturbations. This synchronization approach is simple, global and theoretically rigorous. Simulation results for two fractional-order chaotic systems are provided to illustrate the effectiveness of the proposed scheme.  相似文献   

17.
In this paper, we give the definition of mean square function synchronization. Secondly, we investigate mean square function synchronization of chaotic systems with stochastic perturbation and unknown parameters. Based on the Lyapunov stability theory, inequality techniques, and the properties of the Weiner process, the controller, and adaptive laws are designed to ensure achieving stochastic synchronization of chaotic systems. A sufficient synchronization condition is given to ensure the chaotic systems to be mean-square stable. Furthermore, a numerical simulation is also given to demonstrate the effectiveness of the proposed scheme.  相似文献   

18.
This paper considers the design of adaptive sliding mode control approach for synchronization of a class of fractional-order arbitrary dimensional hyperchaotic systems with unknown bounded disturbances. This approach is based on the principle of sliding mode control and adaptive compensation term for solving the problem of synchronization of the unknown parameters in fractional-order nonlinear systems. In particular, a novel fractional-order five dimensional hyperchaotic system has been introduced as a representative example. Furthermore, global stability and asymptotic synchronization between the outputs of master and slave systems can be achieved based on the modified Lyapunov functional and fractional stability condition. Simulation results are provided in detail to illustrate the performance of the proposed approach.  相似文献   

19.
This paper presents a new type synchronization called modified function lag projective synchronization (MFLPS), where the drive and response systems could be synchronized up to a desired scale function matrix with time-delay. With MFLPS it achieves self-synchronization of a financial hyperchaotic system when the parameters are known and unknown, respectively. The corresponding numerical simulations are performed to verify and illustrate the analytical results.  相似文献   

20.
Ling Lü  Yi Li  Ao Sun 《Nonlinear dynamics》2013,73(4):2111-2117
A method of chaos synchronization and parameter identification is proposed in the paper. The synchronization controller and the parameter recognizer are designed. Two coupled map lattices with different structures are taken as examples to verify the effectiveness of the method. Simulation results show that the identification variables in the parameter recognizer can substitute for the unknown parameters in both target and response systems. Then global synchronization of the two uncertain coupled map lattices can be realized after the designed controller is added.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号