首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In this paper, we studied the effect of driver’s anticipation with passing in a new lattice model. The effect of driver’s anticipation is examined through linear stability analysis and shown that the anticipation term can significantly enlarge the stability region on the phase diagram. Using nonlinear stability analysis, we obtained the range of passing constant for which kink soliton solution of mKdV equation exist. For smaller values of passing constant, uniform flow and kink jam phase are present on the phase diagram and jamming transition occurs between them. When passing constant is greater than the critical value depending on the anticipation coefficient, jamming transitions occur from uniform traffic flow to kink-bando traffic wave through chaotic phase with decreasing sensitivity. The theoretical findings are verified using numerical simulation which confirm that traffic jam can be suppressed efficiently by considering the anticipation effect in the new lattice model.  相似文献   

2.
A new anticipation driving car-following (AD-CF) model is presented based on the effect of traffic anticipation in the real world. The model??s linear stability condition was obtained by applying the linear stability theory. Additionally, a modified Korteweg?Cde Vries (mKdV) equation was derived via nonlinear analysis to describe the propagating behavior of traffic density wave near the critical point. Good agreement between the simulation and the analytical results shows that the stability of traffic flow can be enhanced when the driver??s anticipation effects are considered.  相似文献   

3.
In this paper, a new lattice hydrodynamic model (LH model) of traffic flow under consideration of reaction time of drivers and a corresponding feedback control scheme are proposed. Based on the model, stability analysis is conducted through linear stability analysis of transfer function. The obtained phase diagram indicates that the reaction time of driver can affect the instability region of traffic flow. Under the action of a feedback control, the unstable region is shrunken to reach suppressing jams. The numerical simulations are performed to validate the effect of reaction time of driver in the new LH model. The study results confirm that the reaction time of driver significantly affects the unstability of traffic system, and the feedback control can suppress traffic jams. Furthermore, it is found that the traffic system from the chaotic traffic state to periodic steady one is successfully realizing the control of traffic system.  相似文献   

4.
In order to investigate the effect of passing upon traffic flow on curved road, in this paper, an extended one-dimensional lattice hydrodynamic model for traffic flow on curved road with passing is proposed. The stability condition is obtained by the use of linear stability analysis. The result of stability analysis shows that passing behavior plays an important role in influencing the stability of traffic flow as well as radian of curved road. The nonlinear wave equations including Burgers, Korteweg-de Vries and modified Korteweg-de Vries equations are derived to describe the nonlinear traffic behavior in different regions, respectively. The analytical results show that reducing the coefficient of passing may enhance the stability of traffic flow. Jamming transition occurs between uniform flow and kink jam when the coefficient of passing is less than the critical value. When the coefficient of passing is larger than the critical value, jamming transition occurs from uniform flow to irregular wave through chaotic phase with decreasing sensitivity parameter. In addition, compared with other segments of curved road, traffic flow with passing easily becomes unstable and complicated at the entrance and exit of curved road, especially at the entrance of curved road. The numerical simulations are given to illustrate and clarify the analytical results.  相似文献   

5.
A new lattice hydrodynamic traffic flow model is proposed by considering the preceding lattice site’s flux change rate effect. Using linear stability theory, stability condition of the presented model is obtained. It is shown that the stability region significantly enlarges as the flux change rate effect increases. To describe the propagation behavior of a density wave near the critical point, nonlinear analysis is conducted and mKdV equation representing kink-antikink soliton is derived. To verify the theoretical findings, numerical simulation is conducted which confirms that preceding lattice site’s flux change rate can improve the stability of traffic flow effectively.  相似文献   

6.
In this paper, we study the continuum modeling of traffic dynamics for two-lane freeways. A new dynamics model is proposed, which contains the speed gradient-based momentum equations derived from a car-following theory suited to two-lane traffic flow. The conditions for securing the linear stability of the new model are presented. Numerical tests are carried out and some nonequilibrium phenomena are observed, such as small disturbance instability, stop-and-go waves, local clusters and phase transition. The project supported by the National Natural Science Foundation of China (70521001) The English text was polished by Yunming Chen.  相似文献   

7.
In this paper, a new two-lane lattice model is presented by considering the effect of drivers’ delay in sensing relative flux. By means of the linear stability analysis, the effect of drivers’ delay time on the stability of two-lane traffic flow is examined and shown that with the drivers’ delay time increasing, the unstable areas expand accordingly on the phase diagram, which is also confirmed by direct computer simulations. Through nonlinear analysis method, the modified Korteweg–deVries equation near the critical point is obtained and solved to describe the traffic- jamming transitions in a two-lane system.  相似文献   

8.
In this paper, an extended car-following model is proposed to simulate traffic flow by considering the honk effect. The stability condition of this model is obtained by using the linear stability analysis. The phase diagram shows that the honk effect plays an important role in improving the stabilization of traffic system. The mKdV equation near the critical point is derived to describe the evolution properties of traffic density waves by applying the reductive perturbation method. Furthermore, the numerical simulation is carried out to validate the analytical results and indicates that the traffic jam can be suppressed efficiently via taking into account the honk effect.  相似文献   

9.
A new lattice model of traffic flow based on Nagatani’s model is proposed by taking the effect of driver’s memory into account. The linear stability condition of the extended model is obtained by using the linear stability theory. The analytical results show that the stabile area of the new model is larger than that of the original lattice hydrodynamic model by adjusting the driver’s memory intensity parameter p of the past information in the system. The modified KdV equation near the critical point is derived to describe the traffic jam by nonlinear analysis, and the phase space could be divided into three regions: the stability region, the metastable region, and the unstable region, respectively. Numerical simulation also shows that our model can stabilize the traffic flow by considering the information of driver’s memory.  相似文献   

10.
In order to reveal the self-stabilization effect of the lattice’s historical information on traffic flow, a new lattice hydrodynamic model with consideration of the considered lattice’s historical flow is proposed. The impact of the lattice’s historical flow on traffic stability is uncovered through theoretical analyses and numerical simulation. Through theoretical analyses, the linear stability condition of the new model is obtained, and the nonlinear mKdV equation is derived to describe traffic jamming transition of the new model near the critical point. From numerical simulation, the theoretical analyses are verified and it is shown that the traffic stability can be enhanced by considering the current lattice’s self-information of its historical flow.  相似文献   

11.
In this paper, we derive the KdV equation from the two-lane lattice hydrodynamic traffic model considering density difference effect. The soliton solution is obtained from the KdV equation. Under periodical boundary, the KdV soliton of traffic flow is demonstrated by numerical simulation. The numerical simulation result is consistent with the nonlinear analytical result. Under open system, the density fluctuation of the downstream last one lattice is designed to explore the empirical congested traffic states. A phase diagram is presented which includes free traffic, moving localized cluster, triggered stop-and-go traffic, oscillating congested traffic, and homogeneous congested traffic. Finally, the spatiotemporal evolution of all the traffic states described in phase diagram are reproduced. Results suggest that the two-lane density difference hydrodynamic traffic model is suitable to describe the actual traffic.  相似文献   

12.
In this paper, a new car-following model is presented, taking into account the anticipation of potential lane changing by the leading vehicle. The stability condition of the model is obtained by using the linear stability theory. The modified Korteweg-de Vries (KdV) equation is constructed and solved, and three types of traffic flow in the headway-sensitivity space, namely stable, metastable and unstable ones, are classified. Both the analytical and simu- lation results show that anxiety about lane changing does indeed have an influence on driving behavior and that a consideration of lane changing probability in the car-following model could stabilize traffic flows. The quantitative relationship between stability improvement and lane changing probability is also investigated.  相似文献   

13.
陈永  贺红  张薇  周宁 《力学学报》2018,50(5):1219-1234
为研究驾驶员行为对道路交通的定量影响, 针对驾驶员行为特点, 综合考虑了驾驶员受到的直接物理影响和间接心理影响、相对速度以及车辆自身特性等因素, 结合场力、图论等方法, 提出了一种用于模拟考虑驾驶员影响因素的元胞自动机交通流动力学模型(简称IDCA模型). 通过计算机数值模拟, 研究了考虑驾驶员影响因素下车流演化机理及不同驾驶员类型对道路交通流的影响. 结果表明: 与NaSch模型相比, 本文建立的IDCA模型能够模拟得到丰富的交通行为, 再现了同步流等交通现象, 从速度波动和车头间距波动分析得出IDCA模型下道路交通流具有更强的稳定性, 堵塞消融效率更高. 此外得到了由不同驾驶员类型按不同比例组成的混合交通流的密度-速度图和密度-流量图, 发现在道路相同中高密度下, 激进型驾驶员所占的比例越大, 车辆速度与交通流量越大, 交通流量随着保守型驾驶员比例的增加而降低. 最后模拟实现了车辆高速跟驰现象, 得到小间距高速跟驰率超过7%的结果与实测结果相符合.   相似文献   

14.
Based on single-lane traffic model, a two-lane traffic model is presented considering the velocity difference control signal. The stability condition of the model is obtained by the control theory. The delayed feedback control signal is added to the two-lane model, and the corresponding stability condition is derived again. The numerical simulations show that as the stability conditions are satisfied, the small disturbance will not amplify with and without control signal. In the meantime, the stability is strengthened as the control signal is considered. So the control signal would suppress the traffic disturbance successfully.  相似文献   

15.
Guanghan Peng 《Nonlinear dynamics》2013,73(1-2):1035-1043
In this paper, a new lattice model of the traffic flow is proposed with the consideration of the driver anticipation effect for a two-lane system. The linear stability condition is derived by employing linear stability analysis. The analytical result shows that the driver anticipation effect can improve the stability of the traffic flow in a two-lane system. The mKdV equation near the critical point is obtained to describe the propagating behavior of a traffic density wave with the perturbation method. The simulation results are also in good agreement with the analytical results, which show that the traffic jam can be suppressed efficiently when the driver anticipation effect is considered in a two-lane system.  相似文献   

16.
交通流特性是混合交通流建模的一个重要因素. 交通流模型中的分岔现象是导致复杂交通现象的因素之一. 交通流的分岔, 涉及复杂的动力学特征且研究较少. 因此, 提出了一个最优速度模型来研究驾驶员记忆对驾驶行为的影响. 基于带有记忆的最优速度连续交通流模型, 利用非线性动力学, 分析和预测了复杂交通现象. 推导了鞍结 (LP) 分岔存在条件, 并通过数值计算得到了余维1 Hopf (H) 分岔、LP分岔和同宿轨 (HC) 分岔以及余维2广义Hopf (GH) 分岔、尖点 (CP) 分岔和Bogdanov-Takens (BT) 分岔等多种分岔结构. 根据双参数分岔区域的特点, 研究了记忆参数对单参数分岔结构的影响, 分析了不同分岔结构对交通流的影响, 并用相平面描述了平衡点附近轨迹的变化特征. 选择Hopf分岔和鞍结分岔作为密度演化的起点, 描述了均匀流、稳定和不稳定的拥挤流以及走走停停现象. 结果表明, 驾驶员记忆对交通流的稳定性有重要影响; 动力学行为很好地解释了交通拥堵现象; 考虑余维2分岔的影响, 能更好地理解交通拥堵产生的根源, 并为制定有效抑制拥堵的方法提供一定的理论依据.   相似文献   

17.
Based on the anticipation lattice hydrodynamic models, which are described by the partial differential equations, the continuum version of the model is investigated through a reductive perturbation method. The linear stability theory is used to discuss the stability of the continuum model. The Korteweg–de Vries (for short, KdV) equation near the neutral stability line and the modified Korteweg–de Vries (for short, mKdV) equation near the critical point are obtained by using the nonlinear analysis method. And the corresponding solutions for the traffic density waves are derived, respectively. The results display that the anticipation factor has an important influence on traffic flow. From the simulation, it is shown that the traffic jam is suppressed efficiently with taking into account the anticipation effect, and the analytical result is consonant with the simulation one.  相似文献   

18.
Empirical test of a microscopic three-phase traffic theory   总被引:1,自引:0,他引:1  
A review of dynamic nonlinear features of spatiotemporal congested patterns in freeway traffic is presented. The basis of the review is a comparison of theoretical features of the congested patterns that are shown by a microscopic traffic flow model in the context of the Kerner's three-phase traffic theory and empirical microscopic and macroscopic pattern characteristics measured on different freeways over various days and years. In this test of the microscopic three-phase traffic flow theory, a model of an "open" road is applied: Empirical time-dependence of traffic demand and drivers' destinations are used at the upstream model boundaries. At downstream model boundary conditions for vehicle freely leaving a modeling freeway section(s) are given. Spatiotemporal congested patterns emerge, develop, and dissolve in this open freeway model with the same types of bottlenecks as those in empirical observations. It is found that microscopic three-phase traffic models can explain all known macroscopic and microscopic empirical congested pattern features (e.g., probabilistic breakdown phenomenon as a first-order phase transition from free flow to synchronized flow, moving jam emergence in synchronized flow rather than in free flow, spatiotemporal features of synchronized flow and general congested patterns at freeway bottlenecks, intensification of downstream congestion due to upstream congestion at adjacent bottlenecks). It turns out that microscopic optimal velocity (OV) functions and time headway distributions are not necessarily qualitatively different, even if local congested traffic behavior is qualitatively different. Model performance with respect to spatiotemporal pattern emergence and evolution cannot be tested using these traffic characteristics. The reason for this is that important spatiotemporal features of congested traffic patterns are lost in these and many other macroscopic and microscopic traffic characteristics, which are widely used as the empirical basis for a test of traffic flow models. PACS: 89.40. + k, 47.54. + r, 64.60.Cn, 64.60.Lx  相似文献   

19.
KINEMATIC WAVE PROPERTIES OF ANISOTROPIC DYNAMICS MODEL FOR TRAFFIC FLOW   总被引:1,自引:0,他引:1  
IntroductionRecentlytheauthorspresentedanewdynamicsmodelfortrafficflow[1].Themodelcomprisesacontinuumequationandadynamicsequation k/ t+ (ku) / x=0 ,( 1 ) u t+u u x=ue(k) -uT +a u x,( 2 )wherekistrafficdensity ;uismeanspeed ;x ,tarespaceandtimecoordinatesrespectively .Tisrel…  相似文献   

20.
In this paper, an extended lattice model is proposed by introducing the multiple density difference effect (MDDE). Stability condition of the new model is obtained through linear stability theory, which shows that considering the MDDE ahead can stabilize traffic flow effectively. The mKdV equation is derived to explore the density waves in the stable and unstable regions, respectively. The kink-antikink solution is obtained from the mKdV equation. Numerical simulation results show that multiple density difference effect (MDDE) can suppress traffic jam considerably, which is in line with the analytical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号