首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
神经网络作为一种强大的信息处理工具在计算机视觉,生物医学,油气工程领域得到广泛应用,引发多领域技术变革.深度学习网络具有非常强的学习能力,不仅能发现物理规律,还能求解偏微分方程.近年来基于深度学习的偏微分方程求解已是研究新热点.遵循于传统偏微分方程解析解、偏微分方程数值解术语,本文称用神经网络进行偏微分方程求解的方法为...  相似文献   

2.
近年来, 人工神经网络(artificial?neural?networks, ANN), 尤其是深度神经网络(deep?neural?networks, DNN)由于其在异构平台上的高计算效率与对高维复杂系统的拟合能力而成为一种在数值计算领域具有广阔前景的新方法. 在偏微分方程数值求解中, 大规模线性方程组的求解通常是耗时最长的步骤之一, 因此, 采用神经网络方法求解线性方程组成为了一种值得期待的新思路. 但是, 深度神经网络的直接预测仍在数值精度方面仍有明显的不足, 成为其在数值计算领域广泛应用的瓶颈之一. 为打破这一限制, 本文提出了一种结合残差网络结构与校正迭代方法的求解算法. 其中, 残差网络结构解决了深度网络模型的网络退化与梯度消失等问题, 将网络的损失降低至经典网络模型的1/5000; 修正迭代的方法采用同一网络模型对预测解的反复校正, 将预测解的残差下降至迭代前的10?5倍. 为验证该方法的有效性与通用性, 本文将该方法与有限差分法结合, 对热传导方程与伯格方程进行了求解. 数值结果表明, 本文所提出的算法对于规模大于1000的方程组具有10倍以上的加速效果, 且数值误差低于二阶差分格式的离散误差.   相似文献   

3.
为发展神经网络方法在求解薄板弯曲问题中的应用,基于Kirchhoff板理论,提出一种采用全连接层求解薄板弯曲四阶偏微分控制方程的神经网络方法。首先在求解域、边界中随机生成数据点作为神经网络输入层的参数,由前向传播系统求出预测解;其次计算预测解在域内及边界处的误差,利用反向传播系统优化神经网络系统的计算参数;最后,不断训练神经网络使误差收敛,从而得到薄板弯曲的挠度精确解。以不同边界、荷载条件的三角形、椭圆形、矩形薄板为例,利用所提方法求解其偏微分方程,与理论解或有限元解对比,讨论了影响神经网络方法收敛的因素。研究表明,本文方法对求解薄板弯曲问题的四阶偏微分控制方程具有一定的适应性,其收敛性受多种条件影响。相比有限元,该方法收敛速度较慢,在复杂的边界条件下收敛性不佳,然而其不基于变分原理,无需计算刚度矩阵,便可获得较高的计算精度。  相似文献   

4.
Nonlinear wave equations have been extensively investigated in the last sev- eral decades. The Landau-Ginzburg-Higgs equation, a typical nonlinear wave equation, is studied in this paper based on the multi-symplectic theory in the Hamilton space. The multi-symplectic Runge-Kutta method is reviewed, and a semi-implicit scheme with certain discrete conservation laws is constructed to solve the first-order partial differential equations (PDEs) derived from the Landau-Ginzburg-Higgs equation. The numerical re- sults for the soliton solution of the Landau-Ginzburg-Higgs equation are reported, showing that the multi-symplectic Runge-Kutta method is an efficient algorithm with excellent long-time numerical behaviors.  相似文献   

5.
宋家豪  曹文博  张伟伟 《力学学报》2023,55(5):1195-1205
物理信息神经网络(physics-informed neural network, PINN)是将模型方程编码到神经网络中,使网络在逼近定解条件或观测数据的同时最小化方程残差,实现偏微分方程求解.该方法虽然具有无需网格划分、易于融合观测数据等优势,但目前仍存在训练成本高、求解精度低等局限性.文章提出频域物理信息神经网络(frequency domain physics-informed neural network, FD-PINN),通过从周期性空间维度对偏微分方程进行离散傅里叶变换,偏微分方程被退化为用于约束FD-PINN的频域中维度更低的微分方程组,该方程组内各方程不仅具有更少的自变量,并且求解难度更低.因此,与使用原始偏微分方程作为约束的经典PINN相比, FD-PINN实现了输入样本数目和优化难度的降低,能够在降低训练成本的同时提升求解精度.热传导方程、速度势方程和Burgers方程的求解结果表明, FD-PINN普遍将求解误差降低1~2个数量级,同时也将训练效率提升6~20倍.  相似文献   

6.
A neural network(NN) is a powerful tool for approximating bounded continuous functions in machine learning. The NN provides a framework for numerically solving ordinary differential equations(ODEs) and partial differential equations(PDEs)combined with the automatic differentiation(AD) technique. In this work, we explore the use of NN for the function approximation and propose a universal solver for ODEs and PDEs. The solver is tested for initial value problems and boundary value problems of ODEs, and the results exhibit high accuracy for not only the unknown functions but also their derivatives. The same strategy can be used to construct a PDE solver based on collocation points instead of a mesh, which is tested with the Burgers equation and the heat equation(i.e., the Laplace equation).  相似文献   

7.
The purpose of this research is to analyze the application of neural networks and specific features of training radial basis functions for solving 2‐dimensional Navier‐Stokes equations. The authors developed an algorithm for solving hydrodynamic equations with representation of their solution by the method of weighted residuals upon the general neural network approximation throughout the entire computational domain. The article deals with testing of the developed algorithm through solving the 2‐dimensional Navier‐Stokes equations. Artificial neural networks are widely used for solving problems of mathematical physics; however, their use for modeling of hydrodynamic problems is very limited. At the same time, the problem of hydrodynamic modeling can be solved through neural network modeling, and our study demonstrates an example of its solution. The choice of neural networks based on radial basis functions is due to the ease of implementation and organization of the training process, the accuracy of the approximations, and smoothness of solutions. Radial basis neural networks in the solution of differential equations in partial derivatives allow obtaining a sufficiently accurate solution with a relatively small size of the neural network model. The authors propose to consider the neural network as an approximation of the unknown solution of the equation. The Gaussian distribution is used as the activation function.  相似文献   

8.
In this paper, a symmetry analysis of the modified 2D Burgers vortex equation with a flow parameter is presented. A general form of classical and non-classical symmetries of the equation is derived. These are fundamental tools for obtaining exact solutions to the equation. In several physical cases of the parameter, the specific classical and non-classical symmetries of the equation are then obtained. In addition to rediscovering the existing solutions given by different methods, some new exact solutions are obtained with the symmetry method, showing that the symmetry method is powerful and more general for solving partial differential equations(PDEs).  相似文献   

9.
Multi-symplectic method for generalized Boussinesq equation   总被引:1,自引:0,他引:1  
The generalized Boussinesq equation that represents a group of important nonlinear equations possesses many interesting properties. Multi-symplectic formulations of the generalized Boussinesq equation in the Hamilton space are introduced in this paper. And then an implicit multi-symplectic scheme equivalent to the multi-symplectic Box scheme is constructed to solve the partial differential equations (PDEs) derived from the generalized Boussinesq equation. Finally, the numerical experiments on the soliton solutions of the generalized Boussinesq equation are reported. The results show that the multi-symplectic method is an efficient algorithm with excellent long-time numerical behaviors for nonlinear partial differential equations.  相似文献   

10.
黄钟民  谢臻  张易申  彭林欣 《力学学报》2021,53(9):2541-2553
发展了一种求解面内变刚度功能梯度薄板弯曲问题的神经网络方法. 面内变刚度薄板弯曲问题的偏微分控制方程为一复杂的4阶偏微分方程, 传统的基于强形式的神经网络解法在求解该偏微分方程时可能会遇到难以收敛、边界条件难以处理的情况. 本文基于Kirchhoff薄板弯曲理论, 提出了一种直角坐标系下任意面内变刚度薄板弯曲问题的神经网络解法. 神经网络模型包含挠度网络与弯矩网络, 分别用于预测薄板的挠度与弯矩, 从而将求解4阶偏微分方程转换为求解一系列二阶偏微分方程组, 通过对挠度、弯矩试函数的构造可使得神经网络计算结果严格满足边界条件. 在误差的反向传播中, 根据本文提出的误差函数公式计算训练误差并结合Adam优化算法更新模型的内部参数. 求解了不同边界条件、形状的面内变刚度薄板弯曲问题, 并将所得计算结果与理论解、有限元解进行对比. 研究表明, 本文模型对于求解面内变刚度薄板弯曲问题具备适应性, 虽然模型中的弯矩网络收敛较挠度网络要慢, 但本文方法在试函数的构造上更为简单、适应性更强.   相似文献   

11.
A stochastic averaging method is proposed for nonlinear energy harvesters subjected to external white Gaussian noise and parametric excitations. The Fokker–Planck–Kolmogorov equation of the coupled electromechanical system of energy harvesting is a three variables nonlinear parabolic partial differential equation whose exact stationary solutions are generally hard to find. In order to overcome difficulties in solving higher dimensional nonlinear partial differential equations, a transformation scheme is applied to decouple the electromechanical equations. The averaged Itô equations are derived via the standard stochastic averaging method, then the FPK equations of the decoupled system are obtained. The exact stationary solution of the averaged FPK equation is used to determine the probability densities of the displacement, the velocity, the amplitude, the joint probability densities of the displacement and velocity, and the power of the stationary response. The effects of the system parameters on the output power are examined. The approximate analytical outcomes are qualitatively and quantitatively supported by the Monte Carlo simulations.  相似文献   

12.
A new purely meshless method for solving elliptic partial differential equations (PDEs) is presented. The method is based on the principle of the analog equation of Katsikadelis, hence its name meshless analog equation method (MAEM), which converts the original equation into a simple solvable substitute one of the same order under a fictitious source. The fictitious source is represented by multiquadric radial basis functions (MQ-RBFs). The integration of the analog equation yields new RBFs, which are used to approximate the sought solution. Then inserting the approximate solution into the PDE and boundary conditions (BCs) and collocating at the mesh-free nodal points results in a system of linear equations, which permit the evaluation of the expansion coefficients of the RBFs series. The method exhibits key advantages over other RBF collocation methods as it is highly accurate and the coefficient matrix of the resulting linear equations is always invertible. The accuracy is achieved using optimal values for the shape parameters and the centers of the multiquadrics as well as of the integration constants of the analog equation, which are obtained by minimizing the functional that produces the PDE. Without restricting its generality, the method is illustrated by applying it to the general second order 2D and 3D elliptic PDEs. The studied examples demonstrate the efficiency and high accuracy of the developed method.  相似文献   

13.
Zhang  Run-Fa  Li  Ming-Chu  Cherraf  Amina  Vadyala  Shashank Reddy 《Nonlinear dynamics》2023,111(9):8637-8646

Interference wave is an important research target in the field of navigation, electromagnetic and earth science. In this work, the nonlinear property of neural network is used to study the interference wave and the bright and dark soliton solutions. The generalized broken soliton-like equation is derived through the generalized bilinear method. Three neural network models are presented to fit explicit solutions of generalized broken soliton-like equations and Boiti–Leon–Manna–Pempinelli-like equation with 100% accuracy. Interference wave solutions of the generalized broken soliton-like equation and the bright and dark soliton solutions of the Boiti–Leon–Manna–Pempinelli-like equation are obtained with the help of the bilinear neural network method. Interference waves and the bright and dark soliton solutions are shown via three-dimensional plots and density plots.

  相似文献   

14.

This work presents a new application of boundary element method (BEM) to model fluid transport in unconventional shale gas reservoirs with discrete hydraulic fractures considering diffusion, sorption kinetics and sorbed-phase surface diffusion. The fluid transport model consists of two governing partial differential equations (PDEs) written in terms of effective diffusivities for free and sorbed gases, respectively. Boundary integral formulations are analytically derived using the fundamental solution of the Laplace equation for the governing PDEs and Green’s second identity. The domain integrals arising due to the time-dependent function and nonlinear terms are transformed into boundary integrals employing the dual-reciprocity method. This transformation retains the domain-integral-free, boundary-integral-only character of standard BEM approaches. In the proposed solution, the free- and sorbed-gas flow in the shale matrix is solved simultaneously after coupling the fracture flow equation of free gas. Well production performance under the effect of relaxation phenomenon due to delayed responses of sorbed gas under nonequilibrium sorption condition is rigorously captured by imposing the zero-flux condition at fracture–matrix interface for the sorbed-gas transport equation. The validity of proposed solution is verified using several case studies through comparison against a commercial finite-element numerical simulator.

  相似文献   

15.
张龙  唐树江 《力学季刊》2023,44(1):150-159
本文通过使用深度神经网络对WENO-Z格式的非线性权重进行改进,提出了一种新的WENO-Z-NN格式.新格式首先用神经网络去随机扰动有限体积系数集,然后用代表偏微分方程解的波形生成的数据,采用L2正则化来学习扰动的最优函数,最后引入测试函数并结合最小总变差和最小总偏差作为评估依据进行后处理,从而得到新的权重.一维波动方程和一维Euler方程的数值结果表明,无论是在粗网格还是在细网格,本文所提出的WENO-Z-NN格式的激波捕捉能力明显优于传统的WENO-Z和WENO-JS-NN格式.  相似文献   

16.
In this paper, numerical solution of partial differential equations (PDEs) is considered by multivariate padé approximations. We applied these method to two examples. First, PDE has been converted to power series by two‐dimensional differential transformation, Then the numerical solution of equation was put into multivariate padé series form. Thus, we obtained numerical solution of PDE. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper,a new method,exact element method for constructing finite element,ispresented.It can be applied to solve nonpositive definite or positive definite partialdifferential equation with arbitrary variable coefficient under arbitrary boundarycondition.Its convergence is proved and its united formula for solving partial differentialequation is given.By the present method,a noncompatible element can be obtained and thecompatibility conditions between elements can be treated very easily.Comparing the exactelement method with the general finite element method with the same degrees of freedom,the high convergence rate of the high order derivatives of solution can be obtained.Threenumerical examples are given at the end of this paper,which indicate all results canconverge to exact solution and have higher numerical precision.  相似文献   

18.
In the present paper, Lie group symmetry method is used to obtain some exact solutions for a hyperbolic system of partial differential equations (PDEs), which governs an isothermal no-slip drift-flux model for multiphase flow problem. Those symmetries are used for the governing system of equations to obtain infinitesimal transformations, which consequently reduces the governing system of PDEs to a system of ODEs. Further, the solutions of the system of ODEs which in turn produces some exact solutions for the PDEs are presented. Finally, the evolutionary behavior of weak discontinuity is discussed.  相似文献   

19.
Zhu  Jinyan  Chen  Yong 《Nonlinear dynamics》2023,111(9):8397-8417

In this paper, we systematically study the integrability and data-driven solutions of the nonlocal mKdV equation. The infinite conservation laws of the nonlocal mKdV equation and the corresponding infinite conservation quantities are given through Riccti equation. The data-driven solutions of the zero boundary for the nonlocal mKdV equation are studied by using the multilayer physical information neural network algorithm, which include kink soliton, complex soliton, bright-bright soliton and the interaction between soliton and kink-type. For the data-driven solutions with nonzero boundary, we study kink, dark, anti-dark and rational solution. By means of image simulation, the relevant dynamic behavior and error analysis of these solutions are given. In addition, we discuss the inverse problem of the integrable nonlocal mKdV equation by applying the physics-informed neural network algorithm to discover the parameters of the nonlinear terms of the equation.

  相似文献   

20.
Wu  Jianping 《Nonlinear dynamics》2021,103(2):1795-1804

This paper proposes a new approach to investigate the nonlinear dynamics in a (3 + 1)-dimensional nonlinear evolution equation via Wronskian condition with a free function. Firstly, a Wronskian condition involving a free function is introduced for the equation. Secondly, by solving the Wronskian condition, some exact solutions are presented. Thirdly, the dynamical behaviors are analyzed by choosing specific functions in the Wronskian condition. In addition, some exact solutions are graphically illustrated by using Mathematica symbolic computations. The dynamical behaviors include stationary y-breather, line-soliton resonance, line-soliton-like phenomenon, parabola–soliton interaction, cubic–parabola–soliton resonance, kink behavior, and singular waves. These results not only illustrate the merits of the proposed method in deriving new exact solutions but also novel dynamical behaviors in the (3 + 1)-dimensional nonlinear evolution equation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号