首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electric conductivity‐dependence of the number of electrons transferred during the oxygen reduction reaction is presented. Intensive properties, such as the number of electrons transferred, are difficult to be considered conductivity‐dependent. Four different perovskite oxide catalysts of different conductivities were investigated with varying carbon contents. More conductive environments surrounding active sites, achieved by more conductive catalysts (providing internal electric pathways) or higher carbon content (providing external electric pathways), resulted in higher number of electrons transferred toward more complete 4e reduction of oxygen, and also changed the rate‐determining steps from two‐step 2e process to a single‐step 1e process. Experimental evidence of the conductivity dependency was described by a microscopic ohmic polarization model based on effective potential localized nearby the active sites.  相似文献   

2.
As a catalyst, single‐atom platinum may provide an ideal structure for platinum minimization. Herein, a single‐atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single‐atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single‐atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen‐reduction reaction toward a two‐electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single‐atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity.  相似文献   

3.
The effect of oxygen vacancies in the anodic oxide film on passive titanium on the kinetics of the oxygen electrode reaction has been studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Oxide films of different donor density were prepared galvanostatically at various current densities until a potential of 20.0 VSHE was achieved. The semiconductive properties of the oxide films were characterized using EIS and Mott-Schottky analysis, and the thickness was measured using ellipsometry. The film thickness was found to be almost constant at ∼44.7 ± 2.0 nm, but Mott-Schottky analysis of the measured high frequency interracial capacitance showed that the donor (oxygen vacancy) density in the n-type passive film decreased sharply with increasing oxide film formation rate (current density). Passive titanium surfaces covering a wide range of donor density were used as substrates for ascertaining relationships between the rates of oxygen reduction/evolution and the donor density. These studies show that the rates of both reactions are higher for passive films having higher donor densities. Possible explanations include enhancement of the conductivity of the film due to the vacancies facilitating charge transfer and the surface oxygen vacancies acting as catalytic sites for the reactions. The possible involvement of surface oxygen vacancies in the oxygen electrode reaction was explored by determining the kinetic order of the OER with respect to the donor concentration. The kinetic orders were found to be greater than zero, indicating that oxygen vacancies are involved as electrocatalytic reaction centers in both the oxygen evolution and reduction reactions. This paper was submitted in honor of the many contributions to electrochemistry that have been made by Professor Boris Grafov. The article is published in the original.  相似文献   

4.
Platinum (Pt) and iridium (Ir) catalysts are well known to strongly enhance the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics, respectively. Pt–Ir-based bimetallic compounds along with carbon-supported titanium oxides (C–TiO2) have been synthesized for the application as electrocatalysts in lithium oxygen batteries. Transition metal oxide-based bimetallic nanocomposites (Pt–Ir/C–TiO2) were prepared by an incipient wetness impregnation technique. The as-prepared electrocatalysts were composed of a well-dispersed homogenous alloy of nanoparticles as confirmed by X-ray diffraction patterns and Fourier transform scanning electron microscopy analyses. The electrochemical characterizations reveal that the Pt–Ir/C–TiO2 electrocatalysts were bifunctional with high activity for both ORR and OER. When applied as an air cathode catalyst in lithium-air batteries, the electrocatalyst improved the battery performance in terms of capacity, reversibility, and cycle life compared to that of cathodes without any catalysts.  相似文献   

5.
Simultaneous realization of improved activity, enhanced stability, and reduced cost remains a desirable yet challenging goal in the search of oxygen evolution electrocatalysts in acid. Herein we report iridium‐containing strontium titanates (Ir‐STO) as active and stable, low‐iridium perovskite electrocatalysts for the oxygen evolution reaction (OER) in acid. The Ir‐STO contains 57 wt % less iridium relative to the benchmark catalyst IrO2, but it exhibits more than 10 times higher catalytic activity for OER. It is shown to be among the most efficient iridium‐based oxide electrocatalysts for OER in acid. Theoretical results reveal that the incorporation of iridium dopants in the STO matrix activates the intrinsically inert titanium sites, strengthening the surface oxygen adsorption on titanium sites and thereby giving nonprecious titanium catalytic sites that have activities close to or even better than iridium sites.  相似文献   

6.
Simultaneous realization of improved activity, enhanced stability, and reduced cost remains a desirable yet challenging goal in the search of oxygen evolution electrocatalysts in acid. Herein we report iridium‐containing strontium titanates (Ir‐STO) as active and stable, low‐iridium perovskite electrocatalysts for the oxygen evolution reaction (OER) in acid. The Ir‐STO contains 57 wt % less iridium relative to the benchmark catalyst IrO2, but it exhibits more than 10 times higher catalytic activity for OER. It is shown to be among the most efficient iridium‐based oxide electrocatalysts for OER in acid. Theoretical results reveal that the incorporation of iridium dopants in the STO matrix activates the intrinsically inert titanium sites, strengthening the surface oxygen adsorption on titanium sites and thereby giving nonprecious titanium catalytic sites that have activities close to or even better than iridium sites.  相似文献   

7.
《Comptes Rendus Chimie》2016,19(10):1254-1265
Recent progress in catalytic direct NO decomposition is overviewed, focusing on metal oxide-based catalysts. Since the discovery of the Cu-ZSM-5 catalyst in the early 1990s, various kinds of catalytic materials such as perovskites, C-type cubic rare earth oxides, and alkaline earth based oxides have been reported to effectively catalyze direct NO decomposition. Although the activities of conventional catalysts are poor in the presence of coexisting O2 and CO2, some of the catalysts reviewed in this article possess significant tolerance toward these coexisting gases. The active sites for direct NO decomposition are different depending on the types of metal oxide-based catalysts. In the case of perovskite type oxides, oxide anion vacancies act as catalytically active sites on which NO molecules are adsorbed. C-type cubic rare earth oxides contain oxide anion vacancies with large cavity space, enabling easy access of NO molecules and their subsequent adsorption. Surface basic sites on alkaline earth based oxides participate in NO decomposition as active sites on which NO molecules are adsorbed as NO2 species. The reaction mechanisms of direct NO decomposition are also discussed.  相似文献   

8.
The synergetic combination of defect engineering and graphene coupling enables to develop an effective way of exploring efficient bifunctional electrocatalyst/electrode materials. Defect-engineered amorphous MoO2-reduced graphene oxide (rGO) nanohybrid was synthesized by soft-chemical reduction of K2MoO4 in graphene oxide colloids. Mo K-edge X-ray absorption spectroscopy clearly demonstrates the rutile-type local atomic structure of amorphous MoO2 with significant oxygen vacancies and intimate electronic coupling with rGO. The defect-introduced MoO2-rGO nanohybrid shows excellent bifunctionality as electrocatalyst for hydrogen evolution reaction and electrode for sodium-ion batteries, which are superior to those of crystalline MoO2-rGO homologue. The beneficial effect of simultaneous defect control and rGO coupling can be ascribed to the provision of oxygen vacancies acting as active sites, the increase of electrical conductivity, and the improvement of reaction kinetics.  相似文献   

9.
In situ autocombustion has been developed as a novel and efficient route for the synthesis of perovskite–carbon nanocomposites for the oxygen reduction reaction (ORR) in alkaline media. We demonstrate the synthesis of crystalline LaMnO3 + δ perovskite–Vulcan composite with a high accessibility of active sites and high electronic conductivity required for efficient electrocatalysis. The rotating disc electrode measurements evidenced an excellent activity of the composite for the ORR.  相似文献   

10.

Successful design of reversible oxygen electrocatalysts does not only require to consider their activity towards the oxygen reduction (ORR) and the oxygen evolution reactions (OER), but also their electrochemical stability at alternating ORR and OER operating conditions, which is important for potential applications in reversible electrolyzers/fuel cells or metal/air batteries. We show that the combination of catalyst materials containing stable ORR active sites with those containing stable OER active sites may result in a stable ORR/OER catalyst if each of the active components can satisfy the current demand of their respective reaction. We compare the ORR/OER performances of oxides of Mn (stable ORR active sites), Fe (stable OER active sites), and bimetallic Mn0.5Fe0.5 (reversible ORR/OER catalyst) supported on oxidized multi-walled carbon nanotubes. Despite the instability of Mn and Fe oxide for the OER and the ORR, respectively, Mn0.5Fe0.5 exhibits high stability for both reactions.

  相似文献   

11.
CH3OH temperature programmed surface reaction (TPSR) spectroscopy was employed to determine the chemical nature of active surface sites for bulk mixed metal oxide catalysts. The CH3OH-TPSR spectra peak temperature, Tp, for model supported metal oxides and bulk, pure metal oxides was found to be sensitive to the specific surface metal oxide as well as its oxidation state. The catalytic activity of the surface metal oxide sites was found to decrease upon reduction of these sites and the most active surface sites were the fully oxidized surface cations. The surface V5+ sites were found to be more active than the surface Mo6+ sites, which in turn were significantly more active than the surface Nb5+ and Te4+ sites. Furthermore, the reaction products formed also reflected the chemical nature of surface active sites. Surface redox sites are able to liberate oxygen and yield H2CO, while surface acidic sites are not able to liberate oxygen, contain either H+ or oxygen vacancies, and produce CH3OCH3. Surface V5+, Mo6+, and Te4+ sites behave as redox sites, and surface Nb5+ sites are Lewis acid sites. This experimental information was used to determine the chemical nature of the different surface cations in bulk Mo-V-Te-Nb-Ox mixed oxide catalysts (Mo(0.6)V(1.5)Ox, Mo(1.0)V(0.5)Te(0.16)Ox, Mo(1.0)V(0.3)Te(0.16)Nb(0.12)Ox). The bulk Mo(0.6)V(1.5)Ox and Mo(1.0)V(0.5)Te(0.16)Ox mixed oxide catalytic characteristics were dominated by the catalytic properties of the surface V5+ redox sites. The surface enrichment of these bulk mixed oxide by surface V5+ is related to its high mobility, V5+ possesses the lowest Tammann temperature among the different oxide cations, and the lower surface free energy associated with the surface termination of V=O bonds. The quaternary bulk Mo(1.0)V(0.3)Te(0.16)Nb(0.12)Ox mixed oxide possessed both surface redox and acidic sites. The surface redox sites reflect the characteristics of surface V5+ and the surface acidic sites reflect the properties normally associated with supported Mo6+. The major roles of Nb5+ and Te4+ appear to be that of ligand promoters for the more active surface V and Mo sites. These reactivity trends for CH3OH ODH parallel the reactivity trends of propane ODH because of their similar rate-determining step involving cleavage of a C-H bond. This novel CH3OH-TPSR spectroscopic method is a universal method that has also been successfully applied to other bulk mixed metal oxide systems to determine the chemical nature of the active surface sites.  相似文献   

12.
The effects of manganese oxide or ceria promoters on the performance of Na2WO4/SiO2 catalysts for oxidative coupling of methane (OCM) are reported. The OCM reaction was performed in a continuous-flow microreactor at 800 ℃, atmospheric pressure and under GHSV = 13200 ml gC-1at h-1. Catalysts were characterized by in situ conductivity measurement, FT-IR spectroscopy, XRD, SEM and temperature programmed reduction analysis. Manganese oxide promoted Na2WO4/SiO2 is considered as one of the active and selective ca...  相似文献   

13.
The electrochemical oxidation of water to molecular oxygen, that is, the oxygen evolution reaction (OER), is a key anodic reaction that supplies electrons and protons for many technologically interesting reduction processes, such as carbon dioxide reduction and nitrogen fixation. Because the OER is a slow reaction, it needs to be facilitated by (photo)electrocatalysts. To develop such catalysts, advances in the mechanistic understanding of the OER are critical. In this opinion, we focus on a key aspect of the OER, namely, how the accumulation of oxidative charge (‘holes’) on the surface of a catalyst triggers O ? O bond formation. We discuss recent advances in understanding the factors that drive surface hole formation at specific sites.  相似文献   

14.
A variation has been found in the binding energy of the 2p3/2 electrons of titanium in titanium oxide layers obtained by the molecular lamination method. With increasing number of synthesized monolayers, as a result of the decrease in the relative quantity of oxygen atoms in the film and the relative content of hydroxyl groups in this quantity of oxygen atoms, the effective charge on the titanium atom is lowered in comparison with a monolayer film, as manifested in a decrease of the binding energy of the titanium 2p3/2 electrons, down to the value characteristic for titanium in bulk titanium oxide.Lensovet Leningrad Technological Institute, Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 27, No. 6, pp. 722–726. November–December, 1991. Original article submitted January 22, 1990.  相似文献   

15.
We report on the chemical activity of trapped electrons in wet titanium oxide gels. These electrons are generated under the band gap irradiation of gels in the spectral range between 3.25 and 4.4 eV and stored as Ti3+ centers that absorb in the visible. Chemical processes in photoirradiated gels are generally similar to those earlier reported in TiO2 colloids; however, peculiarities exist. In particular, a high internal surface of gels strongly enhances interface reactions. Measurements of UV-visible absorption kinetics allow conclusions to be made about extremely high available traps concentration and the activity of all trapped electrons toward nitrate and nitrite anion reduction according to a heterogeneous photocatalytic mechanism.  相似文献   

16.
Platinum oxide electrode, as an important part of hydrogen concentration monitoring sensor built in containment, needs to withstand extreme conditions such as high temperature, high humidity, and high irradiation and can still work normally even in the case of serious accidents, which puts forward higher requirements for its performance. In present study, platinum oxide film electrode was successfully prepared with three-dimensional nano-dendritic, uniform, and crack-free on platinum substrate by reactive magnetron sputtering, and the influence of different substrate temperature and sputtering atmosphere on the composition, morphology, and electrocatalytic property of the film was investigated. The results show that platinum oxide film is composed of PtO and PtO2. As the temperature increases from room temperature (RT) to 200°C, the oxygen vacancies in the amorphous film are gradually repaired and convert to the crystalline state, which shows increasing PtO2 ratio, increasing electrochemical active area (ECSA), and improved stability. When the temperature is rising to 400°C, the film shows decreasing oxygen vacancies, increasing average grain size. Because PtO2 decomposes into PtO and Pt, and thus ECSA decreases, the stability and oxygen reduction activity of the films decreases gradually. At the same temperature, the crystalline film obtained in Ar/50%O2 has higher concentration of oxygen vacancies and smaller average grain size than that obtained in O2, resulting in larger ECSA and relatively good stability. By contrast, the platinum oxide film electrode prepared in Ar/50%O2 and 200°C has better stability and excellent electrocatalytic activity for oxygen reduction.  相似文献   

17.
Amorphous oxides have attracted special attention as advanced electrocatalysts owing to their unique local structural flexibility and attractive electrocatalytic properties. With abundant randomly oriented bonds and surface-exposed defects (e.g., oxygen vacancies) as active catalytic sites, the adsorption/desorption of reactants can be optimized, leading to superior catalytic activities. Amorphous oxide materials have found wide electrocatalytic applications ranging from hydrogen evolution and oxygen evolution to oxygen reduction, CO2 electroreduction and nitrogen electroreduction. The amorphous oxide electrocatalysts even outperform their crystalline counterparts in terms of electrocatalytic activity and stability. Despite of the merits and achievements for amorphous oxide electrocatalysts, there are still issues and challenges existing for amorphous oxide electrocatalysts. There are rarely reviews specifically focusing on amorphous oxide electrocatalysts and therefore it is imperative to have a comprehensive overview of the research progress and to better understand the achievements and issues with amorphous oxide electrocatalysts. In this minireview, several general preparation methods for amorphous oxides are first introduced. Then, the achievements in amorphous oxides for several important electrocatalytic reactions are summarized. Finally, the challenges and perspectives for the development of amorphous oxide electrocatalysts are outlined.  相似文献   

18.
The partial current densities for the transfer of titanium(IV) and oxygen ions, and of electrons at the interface between the electrolyte and the titanium(IV) oxide layer on titanium were measured as functions of total current density and pH value. It is shown theoretically, how conclusions regarding the mechanisms of the transfer reactions of both ions can be drawn from various relations between the ionic partial current densities and their dependence on solution composition, even if the electric potential difference at the oxide interface cannot be measured. Mechanisms for the transfer reactions of titanium(IV) and oxygen ions are derived from the experiments.  相似文献   

19.
Nitrogen (N)-doped carbon materials were shown in recent studies to have promising catalytic activity for oxygen reduction reaction (ORR) as a metal-free alternative to platinum, but the underlying molecular mechanism or even the active sites for high catalytic efficiency are still missing or controversial both experimentally and theoretically. We report here the results of periodic density functional theory (DFT) calculations about the ORR at the edge of a graphene nanoribbon (GNR). The edge structure and doped-N near the edge are shown to enhance the oxygen adsorption, the first electron transfer, and also the selectivity toward the four-electron, rather than the two-electron, reduction pathway. We find that the outermost graphitic nitrogen site in particular gives the most desirable characteristics for improved ORR activity, and hence the active site. However, the latter graphitic nitrogen becomes pyridinic-like in the next electron and proton transfer reaction via the ring-opening of a cyclic C-N bond. This inter-conversion between the graphitic and pyridinic sites within a catalytic cycle may reconcile the controversy whether the pyridinic, graphitic, or both nitrogens are active sites.  相似文献   

20.
Nickel iron oxide is considered a benchmark nonprecious catalyst for the oxygen evolution reaction (OER). However, the nature of the active site in nickel iron oxide is heavily debated. Here we report direct spectroscopic evidence for the different active sites in Fe‐free and Fe‐containing Ni oxides. Ultrathin layered double hydroxides (LDHs) were used as defined samples of metal oxide catalysts, and 18O‐labeling experiments in combination with in situ Raman spectroscopy were employed to probe the role of lattice oxygen as well as an active oxygen species, NiOO?, in the catalysts. Our data show that lattice oxygen is involved in the OER for Ni and NiCo LDHs, but not for NiFe and NiCoFe LDHs. Moreover, NiOO? is a precursor to oxygen for Ni and NiCo LDHs, but not for NiFe and NiCoFe LDHs. These data indicate that bulk Ni sites in Ni and NiCo oxides are active and evolve oxygen via a NiOO? precursor. Fe incorporation not only dramatically increases the activity, but also changes the nature of the active sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号