首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This review (with 340 refs) focuses on methods for specific and sensitive detection of metabolites for diagnostic purposes, with particular emphasis on electrochemical nanomaterial-based sensors. It also covers novel candidate metabolites as potential biomarkers for diseases such as neurodegenerative diseases, autism spectrum disorder and hepatitis. Following an introduction into the field of metabolic biomarkers, a first major section classifies electrochemical biosensors according to the bioreceptor type (enzymatic, immuno, apta and peptide based sensors). A next section covers applications of nanomaterials in electrochemical biosensing (with subsections on the classification of nanomaterials, electrochemical approaches for signal generation and amplification using nanomaterials, and on nanomaterials as tags). A next large sections treats candidate metabolic biomarkers for diagnosis of diseases (in the context with metabolomics), with subsections on biomarkers for neurodegenerative diseases, autism spectrum disorder and hepatitis. The Conclusion addresses current challenges and future perspectives.
Graphical abstract This review focuses on the recent developments in electrochemical biosensors based on the use of nanomaterials for the detection of metabolic biomarkers. It covers the critical metabolites for some diseases such as neurodegenerative diseases, autism spectrum disorder and hepatitis.
  相似文献   

2.
The ever-increasing environmental pollution is a severe threat to the ecosystem’s healthy sustainability, and therefore environmental monitoring of these pollutants has become a burning issue throughout the world. In recent years, cost-effective, selective, portable, sensitive, and rapid sensing devices must be developed in urgent need. Advancement in nanotechnology has urged the use of different types of nanomaterials as an excellent electrode material to amplify the electrochemical detection in terms of long-term stability and electrocatalytic activity of the electrochemical sensors in addition to fulfill the aforementioned desires. This review article intimates significant advancement in developing the enzymatic and non-enzymatic electrochemical sensors based on different nanomaterials for the detection of resorcinol (RS) in the absence or presence of other phenolic compounds. This also concludes the current associated challenges as well as future perspectives for the analysis of RS in the environment. There is plethora of reported articles on RS sensors, but this review mainly discusses the selective reports on the applications of RS sensors.  相似文献   

3.
Two‐dimensional (2D) layered nanomaterials, e.g. graphene and molybdenum disulfide (MoS2), have rapidly emerged in material sciences due to their unique physical, chemical and mechanical properties. In the meanwhile, there is a growing interest in constructing electrochemical sensors for a wide range of chemical and biological molecules by using these 2D nanomaterials. In this review, we summarize recent advances on using graphene and MoS2 for the development of electrochemical sensors for small molecules, proteins, nucleic acids and cells detection. We also provide our perspectives in this rapidly developing field.  相似文献   

4.
This review presents the state of the art of DNA sensors (or genosensors) that utilize electrochemical impedance spectroscopy as the transduction technique. As issue of current interest, it is centered on the use of nanomaterials to develop or to improve performance of these specific biosensors. It will describe the different principles that may be employed in the measuring step and the different formats adopted for detection of a DNA sequence or confirmation or amplification of the finally obtained signal. The use of nanomaterials for the above listed aspects, viz. the use of carbon nanotubes or other nanoscopic elements in the construction of the electrodes, or the use of nanoparticles, mainly gold or quantum dots, for signal enhancement will be fully revised.  相似文献   

5.
本文介绍了近年来纳米材料电化学与生物传感器在有机微污染物检测中的研究现状,分析了这些传感器中纳米材料修饰电极的特点,重点阐述了纳米材料在有机微污染物检测中的重要作用,列举了一些纳米材料电化学与生物传感器在有机微污染物检测中的应用。最后对纳米材料电化学与生物传感器用于有机微污染物的检测研究进行了简要评述和展望。  相似文献   

6.
Recently, nanomaterials have received increasing attention due to their unique physical and chemical properties, which make them of considerable interest for applications in many fields, such as biotechnology, optics, electronics, and catalysis. The development of nanomaterials has proven fundamental for the development of smart electrochemical sensors to be used in different application fields such, as biomedical, environmental, and food analysis. In fact, they showed high performances in terms of sensitivity and selectivity. In this report, we present a survey of the application of different nanomaterials and nanocomposites with tailored morphological properties as sensing platforms for food analysis. Particular attention has been devoted to the sensors developed with nanomaterials such as carbon-based nanomaterials, metallic nanomaterials, and related nanocomposites. Finally, several examples of sensors for the detection of some analytes present in food and beverages, such as some hydroxycinnamic acids (caffeic acid, chlorogenic acid, and rosmarinic acid), caffeine (CAF), ascorbic acid (AA), and nitrite are reported and evidenced.  相似文献   

7.
This article presents an overview of electrochemical sensors that employ nanomaterials and utilize electrochemical impedance spectroscopy for analyte detection. The most widely utilized nanomaterials in impedance sensors are gold (Au) nanoparticles and carbon nanotubes (CNTs). Au nanoparticles have been employed in impedance sensors to form electrodes from nanoparticle ensembles and to amplify impedance signals by forming nanoparticle-biomolecule conjugates in the solution phase. CNTs have been employed for impedance sensors within composite electrodes and as nanoelectrode arrays. The advantages of nanomaterials in impedance sensors include increased sensor surface area, electrical conductivity and connectivity, chemical accessibility and electrocatalysis.  相似文献   

8.
电化学传感器因具有灵敏度高、检测限低等优点而得到广泛应用,将非酶电化学传感器应用于葡萄糖浓度的检测具备重要的研究价值。以金属有机骨架、碳材料和导电聚合物为基底与金属及其衍生物复合,构建的纳米复合材料修饰电极对于葡萄糖的检测具有极高的灵敏度、较低的检测限和快速响应的能力,可应用于实际样品的检测。本文综述了近年来非酶葡萄糖电化学传感器的研究进展,通过对纳米复合材料的性能比较,为非酶葡萄糖传感器的构建提供思路。  相似文献   

9.
The electrochemical microRNA sensors are considered efficient, simple, and inexpensive analytical tools for the early diagnosis of cancer biomarkers. To enhance the sensitivity of the electrochemical genosensors toward detection of microRNAs, several amplification strategies based mainly on nanomaterials, enzymes, and oligonucleotides are investigated and discussed. This review highlights the main current achievements regarding the new promising and sensitive strategies for genosensors’ development, thus allowing for miroRNA analysis at the attomolar level.  相似文献   

10.
The abuse of antibiotics will cause an increase of drug-resistant strains and environmental pollution,which in turn will affect human health.Therefore,it is important to develop effective detection techniques to determine the level of antibiotics contamination in various fields.Compared with traditional detection methods,electrochemical sensors have received extensive attention due to their advantages such as high sensitivity,low detection limit,and good selectivity.In this mini review,we summarized the latest developments and new trends in electrochemical sensors for antibiotics.Here,modification methods and materials of electrode are discussed.We also pay more attention to the practical applications of antibiotics electrochemical sensors in different fields.In addition,the existing problems and the future challenges ahead have been proposed.We hope that this review can provide new ideas for the development of electrochemical sensors for antibiotics in the future.  相似文献   

11.
The determination of biomedical markers and pathogens using electrochemical sensors is a well-established technique in which the transducer and the recognition element are used to detect the target molecule. There is a growing interest in molecularly imprinted polymer (MIPs) applications as promising recognition elements. The use of MIPs as recognition elements in electrochemical sensors offers the advantages of being fast, low cost, and, at the same time, provides accurate and selective results compared with other commonly applied routine methods for biomedical markers and pathogen detection. Compared with other nanomaterials and aptamer-based biosensors, MIP-based sensors offered excellent selectivity for low-priced reagents to be used. The aim of the current review is to discuss the most recent applications of MIP-based electrochemical sensors (2019–2021) as promising detection devices for some important biomarkers, enzymes, and pathogens, such as viruses, bacteria, and toxins.  相似文献   

12.
The metabolic disorder of glucose in human body will cause diseases such as diabetes and hyperglycemia.Hence the determination of glucose content is very important in clinic diagnosing.In recent years,researchers have proposed various non-invasive wearable sensors for rapid and real-time glucose monitoring from human body fluids.Unlike those reviews which discussed performances,detection environments or substrates of the wearable glucose sensor,this review focuses on the sensing nanomaterials since they are the key elements of most wearable glucose sensors.The sensing nanomaterials such as carbon,metals,and conductive polymers are summarized in detail.And also the structural characteristics of different sensing nanomaterials and the corresponding wearable glucose sensors are highlighted.Finally,we prospect the future development requirements of sensing nanomaterials for wearable glucose sensors.This review would give some insights to the further development of wearable glucose sensors and the modern medical treatment.  相似文献   

13.
Erdem A 《Talanta》2007,74(3):318-325
DNA sensing strategies have recently been varieted with the number of attempts at the development of different biosensor devices based on nanomaterials, which will further become DNA microchip systems. The investigations at the side of material science in connection with electrochemical biosensors open new directions for detection of specific gene sequences, and nucleic acid-ligand interactions.An overview is reported here about nanomaterial-based electrochemical DNA sensing strategies principally performed for the analysis of specific DNA sequences and the quantification of nucleic acids. Important features of electrochemical DNA sensing strategies, along with new developments based on nanomaterials are described and discussed.  相似文献   

14.
This review describes recent advances in the use of carbon nanomaterials for electroanalytical detection of biogenic amines (BAs). It starts with a short introduction into carbon nanomaterials such as carbon nanotubes, graphene, nanodiamonds, carbon nanofibers, fullerenes, and their composites. Next, electrochemical sensing schemes are discussed for various BAs including dopamine, serotonin, epinephrine, norepinephrine, tyramine, histamine and putrescine. Examples are then given for methods for simultaneous detection of various BAs. Finally, we discuss the current and future challenges of carbon nanomaterial-based electrochemical sensors for BAs. The review contains 175 references.
Figure
This article reviews recent advances in the use of carbon nanomaterials (CNs) for the electroanalytical measurements of biogenic amines.  相似文献   

15.
This review covers recent advances in the development of new designs of electrochemical sensors and biosensors that make use of electrode surfaces modification with carbon nanotubes. Applications based on carbon nanotubes-driven electrocatalytic effects, and the construction and analytical usefulness of new hybrid materials with polymers or other nanomaterials will be treated. Moreover, electrochemical detection using carbon nanotubes-modified electrodes as detecting systems in separation techniques such as high performance liquid chromatography (HPLC) or capillary electrophoresis (CE) will be also considered. Finally, the preparation of electrochemical biosensors, including enzyme electrodes, immunosensors and DNA biosensors, in which carbon nanotubes play a significant role in their sensing performance will be separately considered.  相似文献   

16.
MicroRNA (miRNA) is an important tumor marker in the human body, and its early detection has a great influence on the survival rate of patients. Although there are many detection methods for miRNA at present such as northern blotting, real-time quantitative polymerase chain reaction, microarrays, and others, electrochemical biosensors have the advantages of low detection cost, small instrument size, simple operation, non-invasive detection and low consumption of reagents and solvents, and thus they play an important role in the early detection of cancer. In addition, with the development of nanotechnology, nano-biosensors show great potential. The application of various nanomaterials in the development of electrochemical biosensor has greatly improved the detection sensitivity of electrochemical biosensor. Among them, carbon nanomaterials which have unique electrical, optical, physical and chemical properties have attracted increasing attention. In particular, they have a large surface area, good biocompatibility and conductivity. Therefore, carbon nanomaterials combined with electrochemical methods can be used to detect miRNA quickly, easily and sensitively. In this review, we systematically review recent applications of different carbon nanomaterials (carbon nanotubes, graphene and its derivatives, graphitic carbon nitride, carbon dots, graphene quantum dots and other carbon nanomaterials) for miRNA electrochemical detection. In addition, we demonstrate the future prospects of electrochemical biosensors modified by carbon nanomaterials for the detection of miRNAs, and some suggestions for their development in the near future.  相似文献   

17.
Functional nanomaterials have emerged as promising candidates in the development of an amperometric sensing platform for the detection and quantification of bioanalytes. The remarkable characteristics of nanomaterials based on metal and metal oxide nanoparticles, carbon nanotubes, and graphene ensure enhanced performance of the sensors in terms of sensitivity, selectivity, detection limit, response time, and multiplexing capability. The electrocatalytic properties of these functional materials can be combined with the biocatalytic activity of redox enzymes to develop integrated biosensing platforms. Highly sensitive and stable miniaturized amperometric sensors have been developed by integrating the nanomaterials and biocatalyst with the transducers. This review provides an update on recent progress in the development of amperometric sensors/biosensors using functional nanomaterials for the sensing of clinically important metabolites such as glucose, cholesterol, lactate, and glutamate, immunosensing of cancer biomarkers, and genosensing.  相似文献   

18.
由于独特的光、电、磁以及催化性质,功能性纳米材料的研究已经渗透到各个学科并在不同领域展示出潜在的应用前景,尤其是利用纳米材料构建功能性电极界面、研究其电化学行为并发展新颖的电化学纳米器件引起了了人们的广泛关注. 本篇综述中,主要介绍作者研究小组在以功能性纳米材料构建新颖的电化学界面的最新进展,集中关注其在电化学传感器、燃料电池以及光谱电化学中的应用. 这些纳米材料的应用极大地增强了电子转移、提高了电化学传感器的灵敏度以及燃料电池的催化效率. 作者也通过合成一些光谱匹配的荧光以及电致变色纳米材料构建新颖的荧光光谱电化学器件,同时在材料的合成组装、多重刺激响应体系以及多功能化进行探索. 最后,作者对这类基于纳米材料的电化学器件的发展和应用予以展望.  相似文献   

19.
One of the most severe environmental problems is heavy metal contamination, putting the world's sustainability at risk. Much effort has been put into developing sensors that can be taken anywhere to detect the environmental effects of heavy metals. Sensitivity, selectivity, multiplexed detection ability, and mobility enhance significantly when nanoparticles and nanostructures are incorporated into sensors. LDHs (layered double hydroxides) have gotten much attention in analytical chemistry in recent years because of their benefits, including their large specific surface area, ease of synthesis, low cost, and high catalytic efficiency and biocompatibility. LDHs are often manufactured as nanomaterial composites or created with specialized three-dimensional structures depending on the application. However, in these settings, LDHs (as color indicators, extracting sorbents, and electrochemical sensing) are usually restricted. Upcoming signs of progress and development possibilities of LDHs in analytical chemistry are reviewed in this paper to assist overcome these problems. Furthermore, the approaches used in the design of LDHs, including structural aspects, are defined and assessed in preparation for future analytical applications. The latest advances in optical and electrochemical sensors to detect heavy metals are described in this review. The sorts and characteristics of LDHs will be explored first. We will then go into microelectrode (or nanoelectrode) arrays, nanoparticle-modified electrodes, and microfluidic optical and electrochemical sensing assays in detail. This paper also discusses design strategies for LDH-based nanostructured sensors and the advantages of using nanomaterials and nanostructures.  相似文献   

20.
Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号