首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Uniform, adherent, single phase samarium doped ceria films have been successfully deposited by spray pyrolysis technique for their application in solid oxide fuel cell. These films have been deposited at different substrate temperatures on glass substrate and subsequently heat treated in tube furnace. Effect of substrate temperature and annealing temperature on phase formation was studied with thermo-gravimetric analysis and differential temperature analysis, X-ray diffraction, scanning electron microscope, and energy dispersive X-ray analysis techniques. These studies showed the formation of single phase Ce0.8Sm0.2O1.9 films, at substrate temperature 400 °C and annealing temperature 550 °C. Electrical resistivity of the films, at room temperature was of the order of 107 Ω cm while at 400 °C it is found to be of the order of 101 Ω cm. This reveals the use of these films for making low temperature solid oxide fuel cells.  相似文献   

2.
 Photoluminescence (PL) properties of Er-doped silicon rich oxide thin films deposited on Si substrate by co-evaporation of silicon monoxide and Er under different atmospheres are investigated. The samples exhibit luminescence peak at 1.54 μm which could be assigned to the recombination in intra-4f Er3+ transition. PL shows that this transition is highest when ammonia atmosphere is used during deposition followed by an annealing temperature at 850 °C in 95% N2+5% H2 gas (forming gas). In fact, we believe that the presence of the N atoms around Er ions increases the intensity of the 1.54 μm luminescence.  相似文献   

3.
SiOx films were deposited on Si(1 0 0) substrates by evaporation of SiO powder. The samples were annealed from room-temperature (RT) to 1100 °C. After the samples were cooled down to RT, photoluminescence (PL) spectra from these samples were measured. It was found that when the annealing temperature Ta is not higher than 1000 °C, there is a PL centered at 620 nm, and with Ta increasing the intensity increases at first and then decreases when Ta is higher than 500 °C. When Ta is no less than 1000 °C another PL peak located at 720 nm appears. Combined with Raman and XRD spectra, we confirm that the latter PL is from Si nanocrystals that start to form when Ta is higher than 1000 °C. PL spectra for Ta<900 °C were discussed in detail and was attributed to defects in the matrix rather than from Si clusters.  相似文献   

4.
We characterized the crystallization and luminescence of blue-emitting BaAl2S4 : Eu electroluminescent thin films, prepared using switching electron-beam evaporation with two targets. From the photoluminescence intensity and decay profile of the activated Eu2+ ions in the BaAl2S4 : Eu, we found that the optimum annealing conditions for preparing highly luminescent thin films are a temperature of around 900°C and an annealing time of 2 min. We analyzed the crystalline properties using cross-sectional transmission electron microscope images. Evaluation of the cathodoluminescence spectra in the cross-sections showed that the BaAl2S4 : Eu emitting layer was luminously inhomogeneous on the depth of the layer and that the main luminescent area was near the surface of the emitting layer. We discuss here the relationship between the crystalline and luminescent properties.  相似文献   

5.
In this work, we study the influence of Pt underlayer in Pt/Sm-Co/Pt trilayers and in Pt/Sm-Co multilayers. In both cases, Pt underlayer seems to impose better crystallinity to Sm-Co layer and certainly promotes the evolution of the hard-magnetic SmCo5 phase. Particularly, in the case of multilayer form, where multiple interlayers of Pt each one serving as a dedicated underlayer for the deposition of a specific Sm-Co layer, enhanced crystallinity is observed. Moreover, post-deposition annealing facilitates these features at relatively lower temperatures (∼400 °C) than those met in thin-film cases. This behavior is also followed by enhancement of saturation magnetization, while higher temperature post-deposition thermal treatment seems to deteriorate structural and magnetic features. If annealing temperature gets over 550 °C macroscopic magnetic features depress, probably due to domination of annealing-activated processes such as Sm oxidation and formation of non-magnetic phases since Pt diffuses throughout the whole magnetic layer.  相似文献   

6.
Nickel and Tantalum thin films with 3:5 thickness ratios were deposited in succession onto 4H-SiC substrate at room temperature. The samples were then heated in situ in vacuum at 650, 800 or 950 °C for 30 min. Glancing angle X-ray diffraction (XRD), Auger electron spectroscopy (AES) and current-voltage (I-V) technique were used for characterising the interfacial reactions and electrical properties. Amorphous Ni-Ta can be formed by solid-state reaction at 650 °C. The minor dissolved Ni in the Ta metal promotes the reaction between Ta and SiC. With increasing annealing temperature up to 950 °C, the dominant carbide changes from Ta2C to TaC and a layer structure is developed. Electrical measurements show that ohmic contact is formed after annealing at or above 800 °C.  相似文献   

7.
In the present paper, we investigate the effect of thermal annealing on optical and microstructural properties of HfO2 thin films (from 20 to 190 nm) obtained by plasma ion assisted deposition (PIAD). After deposition, the HfO2 films were annealed in N2 ambient for 3 h at 300, 350, 450, 500 and 750 °C. Several characterisation techniques including X-ray reflectometry (XRR), X-ray diffraction (XRD), spectroscopic ellipsometry (SE), UV Raman and FTIR were used for the physical characterisation of the as-deposited and annealed HfO2 thin films. The results indicate that as-deposited PIAD HfO2 films are mainly amorphous and a transition to a crystalline phase occurs at a temperature higher than 450 °C depending on the layer thickness. The crystalline grains consist of cubic and monoclinic phases already classified in literature but this work provides the first evidence of amorphous-cubic phase transition at a temperature as low as 500 °C. According to SE, XRR and FTIR results, an increase in the interfacial layer thickness can be observed only for high temperature annealing. The SE results show that the amorphous phase of HfO2 (in 20 nm thick samples) has an optical bandgap of 5.51 eV. Following its transition to a crystalline phase upon annealing at 750 °C, the optical bandgap increases to 5.85 eV.  相似文献   

8.
Giant magnetostrictive SmFe2/Fe exchange-coupled multilayers were fabricated by ion beam sputtering deposition on glass substrates. The effects of SmFe2/Fe exchange coupling action and vacuum annealing on soft-magnetic property and static-dynamic magnetostrictive characteristics of SmFe2/Fe multilayers were investigated. The results showed that the soft-magnetic, static-dynamic magnetostrictive characteristics were greatly improved by SmFe2/Fe exchange coupling action and proper vacuum annealing treatment temperature. Compared with that of SmFe2 single film, the coercivity in the direction of easy magnetization axis for SmFe2/Fe exchange-coupled multilayers exhibited a greater decrease. Better soft-magnetic properties were achieved (Hc=2.54 kA/m, Ms=120.38 emu/g, and Mr/Ms=0.21) after vacuum annealing at certain temperature. The magnetostrictive coefficient for SmFe2/Fe exchange-coupled multilayers was about 135 ppm at 16 kA/m magnetic field. At first order resonant frequency (99.2 Hz), the amplitude peak-peak value for the as-deposited SmFe2/Fe exchange-coupled multilayers was 46 μm. After the vacuum annealing treatment at 250 °C, the amplitude peak-peak value increased to 650 μm.  相似文献   

9.
Series of [FePt(4min)/Fe(tFe)]10 multilayers have been prepared by RF magnetron sputtering and post-annealing in order to optimize their magnetic properties by structural designs. The structure, surface morphology, composition and magnetic properties of the deposited films have been characterized by X-ray diffractometer (XRD), Rutherford backscattering (RBS), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX) and vibrating sample magnetometer (VSM). It is found that after annealing at temperatures above 500 °C, FePt phase undergoes a phase transition from disordered FCC to ordered FCT structure, and becomes a hard magnetic phase. X-ray diffraction studies on the series of [FePt/Fe]n multilayer with varying Fe layer thickness annealed at 500 and 600 °C show that lattice constants change with Fe layer thickness and annealing temperature. Both lattice constants a and c are smaller than those of standard ones, and lattice constant a decreases as Fe layer deposition time increases. Only a slight increase in grain size was observed as Fe layer decreased in samples annealed at 500 °C. However, the increase in grain size is large in samples annealed at 600 °C. The coercivities of [FePt/Fe]n multilayers decrease with Fe layer deposition time, and the energy product (BH)max reaches a maximum in the samples with Fe layer deposition time of 3 min. Comparison of magnetic properties with structure showed an almost linear relationship between the lattice constant a and the coercivities of the FePt phase.  相似文献   

10.
β-FeSi2 thin films were prepared on Si (1 1 1) substrates by pulsed laser deposition (PLD) with a sintering FeSi2 target and an electrolytic Fe target. The thin films without micron-size droplets were prepared using the electrolytic Fe target; however, the surface without droplets was remarkably rougher using the Fe target than using the FeSi2 target. After deposition at 600 °C and then annealing at 900 °C for 20 h, XRD indicated that the thin film prepared using the Fe target had a poly-axis-orientation, but that prepared using the FeSi2 target had a one-axis-orientation. The PL spectra of the thin films prepared using the FeSi2 and Fe targets at a growth temperature of 600 °C and subsequently annealed at 900 °C for 20 h had A-, B- and C-bands. Moreover, it was found that the main peak at 0.808 eV (A-band) in the PL spectrum of the thin films prepared using the FeSi2 target was the intrinsic luminescence of β-FeSi2 from the dependence of PL peak energy on temperature and excitation power density.  相似文献   

11.
We have prepared SrTiO3/BaTiO3 thin films with multilayered structures deposited on indium tin oxide (ITO) coated glass by a sol-gel deposition and heating at 300-650 °C. The optical properties were obtained by UV-vis spectroscopy. The films show a high transmittance (approximately 85%) in the visible region. The optical band gap of the films is tunable in the 3.64-4.19 eV range by varying the annealing temperature. An abrupt decrease towards the bulk band gap value is observed at annealing temperatures above 600 °C. The multilayered film annealed at 650 ° C exhibited the maximum refractive index of 2.09-1.91 in the 450-750 nm wavelength range. The XRD and AFM results indicate that the films annealed above 600 ° C are substantially more crystalline than the films prepared at lower temperatures which were used to change their optical band gap and complex refractive index to an extent that depended on the annealing temperature.  相似文献   

12.
Interlayer exchange coupling in dc-magnetron sputtered Tb29.6Co70.4/FePt bilayers with different annealing temperatures of the FePt film have been investigated. The dependence of ordering degree on perpendicular magnetic properties of the FePt film was studied. The Tb29.6Co70.4/FePt film has high perpendicular coercivity and high saturated magnetization about 7.5 kOe, and 302 emu/cm3, respectively as the substrate temperature is 500 °C and annealing at 500 °C for 30 min. It also shows a strong exchange coupling between this FePt layer and Tb29.6Co70.4 layer. We also examined the interface wall energy in the exchange coupled Tb29.6Co70.4/FePt double layers.  相似文献   

13.
Amorphous Ce1Y2Fe5O12 (Ce:YIG) thin films deposited on single crystal Si(1 0 0) and thermally oxidized Si(1 0 0) substrates by pulsed laser deposition were annealed in the temperature range of 700-1000 °C in air. The annealing temperature dependence of microstructure and magnetic properties of Ce:YIG films was studied using X-ray diffraction combined with vibrating sample magnetometer. The results show that single phase of polycrystalline Ce:YIG thin films can be obtained by the post-annealing of as-deposited films at the temperature of 700 °C. However, two steps of phase segregation of Ce:YIG occur as the post-annealing temperature increases: at first, Ce:YIG is decomposed into YIG and non-magnetic CeO2 when annealed at 800 °C; then YIG continues to be decomposed forming Fe2O3 when the temperature is increased up to 900 °C. Consequently, the saturation magnetization of Ce:YIG films decreases first and then increases with the post-annealing temperature going up, which indicates that the saturation magnetization of Ce:YIG films is mainly related to the phase composition of the films. Meanwhile, the presence of SiO2 buffer layer can significantly enhance the saturation magnetization of Ce:YIG films.  相似文献   

14.
The magnetic properties of annealed Fe-Pt multilayer thin films with a broad composition range were investigated in order to identify the effects of composition and annealing temperature on the achievable coercive field, and to identify its maximum at low processing temperatures. Two types of multilayer systems were deposited as materials libraries to vary the composition from Fe20Pt80 to Fe75Pt25. The first type of multilayer was comprised of alternating opposing wedges, whereas the second type consisted of repeated uniform Fe and Pt layers interspersed periodically with Fe wedge layers. It was found that coercive fields μ0HC > 0.7 T can be achieved at an annealing temperature of about 300 °C (60 min) for both types of multilayers as long as the composition is close to 50:50. Higher annealing temperatures are needed for films, which deviate from this composition. Increasing the annealing temperature up to 700 °C leads to increased coercivity values. Multilayers with additional Fe layers showed increased remanence but reduced coercive fields.  相似文献   

15.
CoPt-TiO2 nanocomposite films were synthesized by rapid thermal annealing of CoPt/TiO2 multilayers. The effects of annealing temperature, annealing time, Ag addition and TiO2 volume fraction on the microstructures and magnetic properties of the CoPt-TiO2 nanocomposite films were studied. Results showed that the ordering degree of CoPt and coercivity of CoPt-TiO2 nanocomposites increased with annealing temperature. Increasing annealing time and Ag addition were able to increase the ordering degree and coercivity of CoPt. However, complete L10-ordering of CoPt at 550 °C annealing was not realized by increasing annealing time up to 30 min and Ag addition up to 30 vol.%. Increasing TiO2 volume fraction at 700 °C annealing did not lead to the change of ordering of CoPt. However, the grain structure of the films changed slightly when TiO2 volume fraction was larger than 56%. The coercivity of the film decreased slightly with the addition of TiO2.  相似文献   

16.
The behaviour of trap centres and luminescence centres has been investigated for fired and unfired natural quartz from bricks and sediments irradiated at 100 Gy and annealed at different temperatures in the range 350-700 °C. The annealing treatment affects thermoluminescence (TL) glow curve as various changes were observed. The higher sensitization occurred for an annealing in the region 550-600 °C. At this annealing temperature, it has been observed the emergence of two peaks arising at 96 and 180 °C. At lower annealing temperatures, these peaks are overlapped by the peaks localized at 90 and 195 °C, respectively. Concerning the fired quartz, the higher sensitization occurred for an annealing in the region 500-550 °C for peak temperature around 200 °C and an unusual desensitization for the peak temperature around 100 °C. The behaviour of the two types of quartz is analyzed regarding to their kinetic parameters and luminescence emission and compared to literature data.  相似文献   

17.
The influence of annealing on the structure and magnetic properties of amorphous Co/Zr and Co/Hf multilayer films was studied with particular attention to the dependence of the magnetic properties, thermal stability and crystallization process on layer composition and thickness. The temperature at which crystallization commences increases from 400 to 460 °C as the layer thickness dZr or dHf increases from 6 to 18 Å, and decreases from 450 to 400 °C as dCo increases from 12 to 18 Å. Multilayers containing 19–60 at% Zr were studied. The specific magnetization was found to increase even below the temperature at which crystallization commences. Our data are compared with non-multilayer Co–Zr amorphous films and rapidly quenched metallic glasses.  相似文献   

18.
We have explored the interlayer diffusion effect of Ge/FePt, GePt/FePt bilayer on the formation of ordered L10 FePt phase. In Ge/FePt bilayer, the Ge3Pt2 compound was formed during post annealing at 400oC for 1.0 h. Diffusion between Ge and FePt layer suppres the formation of ordered L10 FePt phase. With Ge2Pt3 underlayer, the FePt film was ordered at 400 °C and the in-plane coercivity was 9.3 kOe. The ordering temperature was reduced about 50 °C compared to the single layer FePt film.  相似文献   

19.
High-coercivity Au(60 nm)/FePt(δ nm)/Au(60 nm) trilayer samples were prepared by sputtering at room temperature, followed by post annealing at different temperatures. For the sample with δ=60 nm, L10 ordering transformation occurs at 500 °C. Coercivity (Hc) is increased with the annealing temperature in the studied range 400–800 °C. The Hc value of the trilayer films is also varied with thickness of FePt intermediate layer (δ), from 27 kOe for δ=60 nm to a maximum value of 33.5 kOe for δ=20 nm. X-ray diffraction data indicate that the diffusion of Au atoms into the FePt L10 lattice is negligible even after a high-temperature (800 °C) annealing process. Furthermore, ordering parameter is almost unchanged as δ is reduced from 60 to 15 nm. Transmission electron microscope (TEM) photos indicate that small FePt Ll0 particles are dispersed amid the large-grained Au. We believe that the high coercivity of the trilayer sample is attributed to the small and uniform grain sizes of the highly ordered FePt particles which have perfect phase separation with Au matrix.  相似文献   

20.
The polycrystalline Ti/TiNx multilayer films were deposited by magnetron sputtering, and the as-deposited multilayer coatings were annealed at 500-800 °C for 2-4 h in vacuum. We investigated the effects of annealing temperature and annealing time on the microstructural, interfacial, and mechanical properties of the polycrystalline Ti/TiNx multilayer films. It was found that the hardness increased with annealing temperature. This hardness enhancement was probably caused by the preferred crystalline orientation TiN(1 1 1). The X-ray reflectivity measurements showed that the layer structure of the coatings could be maintained after annealing at 500 °C and the addition of the Si3N4 interlayer to Ti/TiNx multilayer could improve the thermal stability to 800 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号