首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glasses of the composition (40−x) PbO-15Bi2O3-45As2O3-xCoO, with 0≤x≤0.6 mol% in the steps of 0.1 were synthesized. The dielectric properties viz., dielectric constant, loss and ac conductivity over moderately larger ranges of frequency and temperature were investigated. The results were analyzed with the aid of the data on optical absorption and IR spectra. The analysis indicated that there is an increase in the insulating strength of the glasses with increase in the concentration of CoO up to 0.4 mol%.  相似文献   

2.
Lead bismuth arsenate glasses mixed with different concentrations of WO3 (ranging from 0 to 6.0 mol%) were synthesized. Differential thermal analysis (DTA), optical absorption, ESR and IR spectral studies have been carried out. The results of DTA have indicated that there is a gradual decrease in the resistance of the glass against devitrification with increase in the concentration of WO3 upto 4.0 mol%.The optical absorption spectra of these glasses exhibited a relatively broad band peaking at about 880 nm identified due to dxydx2y2 transition of W5+ ions; this band is observed to be more intense in the spectrum of glass containing 4.0 mol% of WO3. Further, two prominent kinks attributed to 3P01S0, 1D2 transitions of Bi3+ ions have also been located in the absorption spectra. The ESR spectra of these glasses recorded at room temperature exhibited an asymmetric signal at g∼1.71 and gll∼1.61. The intensity of the signal is observed to be maximal for the spectrum of the glass W4. The quantitative analysis of optical absorption and ESR spectral studies have indicated that there is a maximum reduction of tungsten ions from W6+ state to W5+ state in the glass containing 4.0 mol% of WO3. The IR spectral studies have indicated that there is a increasing degree of disorder in the glass network with increase in the concentration of WO3 upto 4.0 mol%.  相似文献   

3.
BaO-Al2O3-P2O5 glasses containing different concentrations of NiO (ranging from 0 to 1.0 mol%) were prepared. A number of studies viz., chemical durability, differential thermal analysis, spectroscopic (infrared, optical absorption spectra), magnetic susceptibility and dielectric properties (constant ε′, loss tan δ, AC conductivity σAC over a range of frequency and temperature) of these glasses have been carried out. The studies on chemical durability indicate that there is a significant increase in the corrosion resistance of the glasses; where as the results of differential thermal analysis suggests that there is a substantial improvement in the glass forming ability, with increase in the concentration of NiO up to 0.6 mol% in the glass matrix. The optical absorption, magnetic susceptibility and IR spectral studies point out nickel ions occupy both tetrahedral and octahedral positions in the glass network; the later positions seems to be dominant when the concentration of NiO is beyond 0.6 mol% in the glass matrix. The studies of dielectric properties reveal that the presence of nickel oxide in the glass network causes a considerable improvement in the insulating strength of the se glasses when the concentration of NiO?0.6 mol%.  相似文献   

4.
Oxonitridosilicate phosphors with compositions of (Y1−xCex)2Si3O3N4 (x=0−0.2) have been synthesized by solid state reaction method. The structures and photoluminescence properties have been investigated. Ce3+ ions have substituted for Y3+ ions in the lattice. The emission and excitation spectra of these phosphors show the characteristic photoluminescence spectra of Ce3+ ions. Based on the analyses of the diffuse reflection spectra and the PL spectra, a systematic energy diagram of Ce3+ ion in the forbidden band of sample with x=0.02 is given. The best doping Ce content in these phosphors is ∼2 mol%. The quenching temperature is ∼405 K for the 2 mol% Ce content sample. The luminescence decay properties were investigated. The primary studies indicate that these phosphors are potential candidates for application in three-phosphor-converted white LEDs.  相似文献   

5.
A novel green phosphor, Tb3+ doped Bi2ZnB2O7 was synthesized by conventional solid state reaction method. The phase of synthesized materials was determined using the XRD, DTA/TG and FTIR. The photoluminescence characteristics were investigated using spectrofluorometer at room temperature. Bi2ZnB2O7:Tb3+ phosphors excited by 270 nm and 485 nm wavelengths. The emission spectra were composed of three bands, in which the dominated emission of green luminescence Bi2ZnB2O7:Tb3+ attributed to the transition 5D4 → 7F5 is centered at 546 nm. The dependence of the emission intensity on the Tb3+ concentration for the Bi2−xTbxZnB2O7 (0.01 ≤ x ≤ 0.15) was studied and observed that the optimum concentration of Tb3+ in phosphor was 13 mol% for the highest emission intensity at 546 nm.  相似文献   

6.
LiF-MoO3-P2O5 glasses mixed with different concentrations of Ag2O (ranging from 0 to 1.0 mol%) was prepared. D.C. conductivity and dielectric properties over a range of temperature have been investigated. The analysis of the results of d.c. conductivity has indicated that T>θD/2, the small polaron hoping model seems to be fit and the conduction is adiabatic in nature. These results further indicated that there is a change over of conduction mechanism from electronic to ionic at about 0.4 mol% of Ag2O. The low temperature part of a.c. conductivity is explained based on quantum mechanical tunneling model. The quantitative analysis of these results is further extended with the aid of the data on optical absorption, ESR and IR spectral studies.  相似文献   

7.
C. Li 《Applied Surface Science》2010,256(22):6801-6804
Fe2O3/Al2O3 catalysts were prepared by solid state reaction method using α-Fe2O3 and γ-Al2O3 nano powders. The microstructure and surface properties of the catalyst were studied using positron lifetime and coincidence Doppler broadening annihilation radiation measurements. The positron lifetime spectrum shows four components. The two long lifetimes τ3 and τ4 are attributed to positronium annihilation in two types of pores distributed inside Al2O3 grain and between the grains, respectively. With increasing Fe2O3 content from 3 wt% to 40 wt%, the lifetime τ3 keeps nearly unchanged, while the longest lifetime τ4 shows decrease from 96 ns to 64 ns. Its intensity decreases drastically from 24% to less than 8%. The Doppler broadening S parameter shows also a continuous decrease. Further analysis of the Doppler broadening spectra reveals a decrease in the p-Ps intensity with increasing Fe2O3 content, which rules out the possibility of spin-conversion of positronium. Therefore the decrease of τ4 is most probably due to the chemical quenching reaction of positronium with Fe ions on the surface of the large pores.  相似文献   

8.
Physicochemical, surface and catalytic properties of pure and doped CuO/Fe2O3 system were investigated using X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), nitrogen adsorption at −196 °C and CO-oxidation by O2 at 80-220 °C using a static method. The dopants were Li2O (2.5 mol%) and CoO (2.5 and 5 mol%). The results revealed that the increase in precalcination temperature from 400 to 600 °C and Li2O-doping of CuO/Fe2O3 system enhanced CuFe2O4 formation. However, heating both pure and doped solids at 600 °C did not lead to complete conversion of reacting oxides into CuFe2O4. The promotion effect of Li2O dopant was attributed to dissolution of some of dopant ions in the lattices of CuO and Fe2O3 with subsequent increase in the mobility of reacting cations. CoO-doping led also to the formation of mixed ferrite CoxCu1−xFe2O4. The doping process of the system investigated decreased to a large extent the crystallite size of unreacted portion of Fe2O3 in mixed solids calcined at 600 °C. This process led to a significant increase in the SBET of the treated solids. Doping CuO/Fe2O3 system with either Li2O or CoO, followed by calcination at 400 and 600 °C decreased its catalytic activity in CO-oxidation by O2. However, the activation energy of the catalyzed reaction was not much affected by doping.  相似文献   

9.
Eu2O3-doped yttrium oxide (3 mol%) [Y2O3:Eu(3 mol%)] with wire-like and near-spherical morphologies were prepared by a solvothermal treatment using water, ethanol, ethylene glycol and glycerol as reaction media followed by calcination. The powders prepared in water and ethanol possessed wire structure, where the powder treated in water showed high aspect ratio and that in ethanol showed low aspect ratio. The powders prepared in ethylene glycol and glycerol possessed well-dispersed near-spherical powders, which showed almost the same level of photoluminescence emission intensity as that of submicron particles prepared without solvothermal treatment.  相似文献   

10.
Nano-sized Y2O3 particles were codeposited with nickel by electrolytic plating from a nickel sulfate bath. The effects of the incorporated Y2O3 on the structure, morphology and mechanical properties (including microhardness, friction coefficient and wear resistant) of Ni-Y2O3 composite coatings were studied. It is observed that the addition of nano-sized Y2O3 particles shows apparent influence on the reduction potential and pH of the electrolyte. The incorporated Y2O3 increases from 1.56 wt.% to 4.4 wt.% by increasing the Y2O3 concentration in the plating bath from 20 to 80 g/l. XRD results reveal that the incorporated Y2O3 particles favour the crystal faces (2 0 0) and (2 2 0). SEM and AFM images demonstrate that the addition of Y2O3 particles causes a smooth and compact surface. The present study also shows that the codeposited Y2O3 particles in deposits decrease the friction coefficient and simultaneously reduce the wear weight loss. Ni-Y2O3 composite coatings reach their best microhardness and tribological properties at Y2O3 content 4.4 wt.% under the experiment conditions.  相似文献   

11.
Enhanced photoluminescence (PL) mechanism of Er3+-doped Al2O3 powders by Y3+ codoping at wavelength 1.53 μm has been investigated through PL measurements of 0.1 mol% Er3+- and 0-20 mol% Y3+-codoped Al2O3 powders prepared at a sintering temperature of 900 °C in a non-aqueous sol-gel method. PL intensity and lifetime of Er3+-Y3+-codoped Al2O3 powders composed of γ-(Al,Er,Y)2O3 and θ-(Al,Er,Y)2O3 phases increased with increasing Y3+-codoping concentration. The 10-20 mol% Y3+ codoping in 0.1 mol% Er3+-doped Al2O3 powders intensified the PL intensity by about 20 times, with a PL lifetime prolonged from 3.5 to 5.8 ms. A maximal increase of the optical activity of Er3+ in 0.1 mol% Er3+-Y3+-codoped Al2O3 powders about one order was achieved by 10-20 mol% Y3+ codoping. It is found that the improved PL properties for Er3+-Y3+-codoped Al2O3 powders are mainly attributed to enhanced optical activation of Er3+ in the Al2O3 by Y3+ codoping, and to the slightly increased radiative quantum efficiency of Er3+ in the Al2O3.  相似文献   

12.
Pure Li6CaB3O8.5 and Li6Ca1−xPbxB3O8.5 (0.005≤x≤0.04) materials were prepared by a solution combustion synthesis method. The phase of synthesized materials was determined using the powder XRD and FTIR. The synthesized materials were investigated using spectrofluorometer at room temperature. The emission and excitation bands of the synthesized phosphors were observed at 307 and 268 nm, respectively. The dependence of the emission intensity on the Pb2+ concentration for the Li6Ca1−xPbxB3O8.5 (0.005≤x≤0.04) was studied and observed that the optimum concentration of Pb2+ in phosphor is 0.01 mol. The Stokes shift of the synthesized phosphor was calculated to be 4740 cm-1.  相似文献   

13.
Zinc phosphate glasses doped with Gd2O3:Eu nanoparticles and Eu2O3 were prepared by conventional melt-quench method and characterized for their luminescence properties. Binary ZnO-P2O5 glass is characterized by an intrinsic defect centre emission around 324 nm. Strong energy transfer from these defect centres to Eu3+ ions has been observed when Eu2O3 is incorporated in ZnO-P2O5 glasses. Lack of energy transfer from these defect centres to Eu3+ in Gd2O3:Eu nanoparticles doped ZnO-P2O5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between the luminescent centre and Eu3+ ions. Both doped and undoped glasses have the same glass transition temperature, suggesting that the phosphate network is not significantly affected by the Gd2O3:Eu nanoparticles or Eu2O3 incorporation.  相似文献   

14.
(In1−xFex)2O3 (x = 0.02, 0.05, 0.2) powders were prepared by a solid state reaction method and a vacuum annealing process. A systematic study was done on the structural and magnetic properties of (In1−xFex)2O3 powders as a function of Fe concentration and annealing temperature. The X-ray diffraction and high-resolution transmission electron microscopy results confirmed that there were not any Fe or Fe oxide secondary phases in vacuum-annealed (In1−xFex)2O3 samples and the Fe element was incorporated into the indium oxide lattice by substituting the position of indium atoms. The X-ray photoelectron spectroscopy revealed that both Fe2+ and Fe3+ ions existed in the samples. Magnetic measurements indicated that all samples were ferromagnetic with the magnetic moment of 0.49-1.73 μB/Fe and the Curie temperature around 783 K. The appearance of ferromagnetism was attributed to the ferromagnetic coupling of Fe2+ and Fe3+ ions via an electron trapped in a bridging oxygen vacancy.  相似文献   

15.
The promotion of sulfur oxides on the selective catalytic reduction (SCR) of NO by hydrocarbons in the presence of a low concentration of sulfur oxides over Ag/Al2O3 has been investigated by a flow reaction test and in situ infrared spectroscopy. When the C3H6 (or C10H22) + NO + O2 feed-flow reaction was tested, maximum NO reduction was below 30% over fresh Ag/Al2O3. After the addition of SO2 to the feed flow, conversion increased slightly. Conversion increased further after SO2 was cut-off from the feed flow. This demonstrated that the increase in NO reduction activity of the catalyst was related to SOx adsorbed on the catalyst. SOx adsorbed on the catalytic surface (1375 cm−1) was detected by IR spectroscopy and was stable within the temperature range. NCO species, as an intermediate in NO reduction, on SOx-adsorbed Ag/Al2O3 in a C3H6 + NO + O2 feed flow was observed in in situ IR spectra during the elevation of the reaction temperature from 473 to 673 K, while it was only observed at 673 K on fresh Ag/Al2O3 under the same experimental conditions. We suggest that SOx in low concentrations depressed the combustion of reductants by contaminating hydrocarbon combustion active sites on the catalyst, resulting in an increase in NO reduction efficiency of the reductants.  相似文献   

16.
Using (Bi2O3)0.75(Dy2O3)0.25 nano-powder synthesized by reverse titration co-precipitation method as raw material, dense ceramics were sintered by both Spark Plasma Sintering (SPS) and pressureless sintering. According to the predominance area diagram of Bi-O binary system, the sintering conditions under SPS were optimized. (Bi2O3)0.75(Dy2O3)0.25 ceramics with relative density higher than 95% and an average grain size of 20 nm were sintered in only 10 min up to 500 °C. During the pressureless sintering process, the grain growth behavior of (Bi2O3)0.75(Dy2O3)0.25 followed a parabolic trend, expressed as D2 − D02 = Kt, and the apparent activation energy of grain growth was found to be 284 kJ mol− 1. Dense (Bi2O3)0.75(Dy2O3)0.25 ceramics with different grain sizes were obtained, and the effect of grain size on ion conductivity was investigated by impedance spectroscopy. It was shown that the total ion conductivity was not affected by the grain size down to 100 nm, however lower conductivity was measured for the sample with the smallest grain size (20 nm). But, although only the δ phase was evidenced by X-ray diffraction for this sample, a closer inspection by Raman spectroscopy revealed traces of α-Bi2O3.  相似文献   

17.
Uniform and crack free polycrystalline lutetium oxide (Lu2O3:(Eu,Pr)) films were fabricated by Pechini sol-gel method combined with the spin-coating technique. X-ray diffraction (XRD) and atomic force microscope (AFM) characterizations indicated that the obtained film was composed of polycrystalline cubic Lu2O3 phase with an average grain size around 30 nm. The photoluminescence(PL) spectra and decay performances of the Lu2O3:5 mol% Eu films co-doped by 0-0.5 mol% Pr3+ with different concentrations were characterized. It was found that the afterglow was reduced obviously due to the introduction of 0-0.5 mol% Pr3+ in the Lu2O3:5 mol% Eu films coupled by decrease in the emission intensity at 612 nm. The mechanism of afterglow diminishing was discussed based on the thermoluminescence measurements.  相似文献   

18.
In this paper, Y2O3 powder phosphors without metal activators were successfully prepared by the sol-gel method. The obtained sample shows an intense bluish-white emission (ranging from 350 to 600 nm, centered at 416 nm) under a wide range of UV light excitation (235-400 nm). The chromaticity coordinates of the sample are x=0.159, y=0.097, and the quantum yield is as high as 64.6%, which is a high value among the phosphor family without metal activators. The luminescent mechanisms have been ascribed to the carbon impurities in the Y2O3 host.  相似文献   

19.
ZnO-Sb2O3-B2O3 glasses containing different concentrations of MnO ranging from 0 to 1.0 mol% were prepared. A number of studies, viz. optical absorption, infrared and ESR spectra and magnetic susceptibility, were carried out as a function of manganese ion concentration. The analysis of the results indicate that manganese ions mostly exist in Mn2+ state in these glasses when the concentration of MnO≤0.6 mol% and above this concentration, these ions seem to exist in Mn3+ state in the glass network.  相似文献   

20.
Dielectric properties, viz. dielectric constant ε′, loss tan δ and a.c conductivity σac (over a wide range of frequency and temperature) and dielectric breakdown strength of PbO-Sb2O3-As2O3 glasses doped with V2O5 (ranging from 0 to 0.5 mol%) are studied. Analysis of these results, based on optical absorption and ESR spectra, indicates that the insulating strength of the glasses is comparatively high when the concentration of V2O5 is about 0.3 mol% in the glass matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号