首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is devoted to the analysis of complex dynamics of a generalized Lorenz–Stenflo hyperchaotic system. First, on the local dynamics, the bifurcation of periodic solutions at the zero‐zero‐Hopf equilibrium (that is, an isolated equilibrium with double zero eigenvalues and a pair of purely imaginary eigenvalues) of this hyperchaotic system is investigated, and the sufficient conditions, which insure that two periodic solutions will bifurcate from the bifurcation point, are obtained. Furthermore, on the global dynamics, the explicit ultimate bound sets of this hyperchaotic system are obtained. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
We characterize the values of the parameters for which a zero‐Hopf equilibrium point takes place at the singular points, namely, O (the origin), P+, and P? in the FitzHugh–Nagumo system. We find two two‐parameter families of the FitzHugh–Nagumo system for which the equilibrium point at the origin is a zero‐Hopf equilibrium. For these two families, we prove the existence of a periodic orbit bifurcating from the zero‐Hopf equilibrium point O. We prove that there exist three two‐parameter families of the FitzHugh–Nagumo system for which the equilibrium point at P+ and at P? is a zero‐Hopf equilibrium point. For one of these families, we prove the existence of one, two, or three periodic orbits starting at P+ and P?. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we concentrate on the spatiotemporal patterns of a delayed reaction‐diffusion Holling‐Tanner model with Neumann boundary conditions. In particular, the time delay that is incorporated in the negative feedback of the predator density is considered as one of the principal factors to affect the dynamic behavior. Firstly, a global Turing bifurcation theorem for τ = 0 and a local Turing bifurcation theorem for τ > 0 are given. Then, further considering the degenerated situation, we derive the existence of Bogdanov‐Takens bifurcation and Turing‐Hopf bifurcation. The normal form method is used to study the explicit dynamics near the Turing‐Hopf singularity. It is shown that a pair of stable nonconstant steady states (stripe patterns) and a pair of stable spatially inhomogeneous periodic solutions (spot patterns) could be bifurcated from a positive equilibrium. Moreover, the Turing‐Turing‐Hopf–type spatiotemporal patterns, that is, a subharmonic phenomenon with two spatial wave numbers and one temporal frequency, are also found and explained theoretically. Our results imply that the interaction of Turing and Hopf instabilities can be considered as the simplest mechanism for the appearance of complex spatiotemporal dynamics.  相似文献   

4.
Both discrete and distributed delays are considered in a two‐neuron system. We analyze the influence of interaction coefficient and time delay on the Hopf‐pitchfork bifurcation. First, we obtain the codimension‐2 unfolding with original parameters for Hopf‐pitchfork bifurcation by using the center manifold reduction and the normal form method. Next, through analyzing the unfolding structure, we give complete bifurcation diagrams and phase portraits, in which multistability and other dynamical behaviors of the original system are found, such as a stable periodic orbit, the coexistence of two stable nontrivial equilibria, and the coexistence of a stable periodic orbit and two stable equilibria. In addition, the obtained theoretical results are verified by numerical simulations. Finally, we perform the comparisons of the obtained results of Hopf‐pitchfork bifurcation with other Hopf‐fold bifurcation results in some biological neural systems and give the obtained mathematical results corresponding to the physical states of neurons. Copyright © 2015 JohnWiley & Sons, Ltd.  相似文献   

5.
In this paper, we study the dynamics of a Nicholson's blowflies equation with state‐dependent delay. For the constant delay, it is known that a sequence of Hopf bifurcation occurs at the positive equilibrium as the delay increases and global existence of periodic solutions has been established. Here, we consider the state‐dependent delay instead of the constant delay and generalize the results on the existence of slowly oscillating periodic solutions under a set of mild conditions on the parameters and the delay function. In particular, when the positive equilibrium gets unstable, a global unstable manifold connects the positive equilibrium to a slowly oscillating periodic orbit. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
The dynamics of a reaction‐diffusion predator‐prey model with hyperbolic mortality and Holling type II response effect is considered. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated by analyzing the distribution of eigenvalues without diffusion. We also study the spatially homogeneous and nonhomogeneous periodic solutions through all parameters of the system which are spatially homogeneous. To verify our theoretical results, some numerical simulations are also presented. © 2015 Wiley Periodicals, Inc. Complexity 21: 34–43, 2016  相似文献   

7.
In this paper, we investigate the dynamics of a time‐delay ratio‐dependent predator‐prey model with stage structure for the predator. This predator‐prey system conforms to the realistically biological environment. The existence and stability of the positive equilibrium are thoroughly analyzed, and the sufficient and necessary conditions for the stability and instability of the positive equilibrium are obtained for the case without delay. Then, the influence of delay on the dynamics of the system is investigated using the geometric criterion developed by Beretta and Kuang. 26 We show that the positive steady state can be destabilized through a Hopf bifurcation and there exist stability switches under some conditions. The formulas determining the direction and the stability of Hopf bifurcations are explicitly derived by using the center manifold reduction and normal form theory. Finally, some numerical simulations are performed to illustrate and expand our theoretical results.  相似文献   

8.
The aim of this paper is to study the stability and Hopf bifurcation in a general class of differential equation with nonlocal delayed feedback that models the population dynamics of a two age structured spices. The existence of Hopf bifurcation is firstly established after delicately analyzing the eigenvalue problem of the linearized nonlocal equation. The direction of the Hopf bifurcation and stability of the bifurcated periodic solutions are then investigated by means of center manifold reduction. Subsequently, we apply our main results to explore the spatial‐temporal patterns of the nonlocal Mackey‐Glass equation. We obtain both spatially homogeneous and inhomogeneous periodic solutions and numerically show that the former is stable while the latter is unstable. We also show that the inhomogeneous periodic solutions will eventually tend to homogeneous periodic solutions after transient oscillations and increasing of the immature mobility constant will shorten the transient oscillation time.  相似文献   

9.
We use Mather's finite determinacy theory and Baum‐Bott's theorem to give sharp bounds for the Poincaré‐Hopf index of a germ of homolorphic vector field with an isolated zero. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
In this paper, an eco‐epidemiological model with Holling type‐III functional response and a time delay representing the gestation period of the predators is investigated. In the model, it is assumed that the predator population suffers a transmissible disease. The disease basic reproduction number is obtained. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria and the existence of Hopf bifurcations at the disease‐free equilibrium and the endemic‐coexistence equilibrium are established, respectively. By using the persistence theory on infinite dimensional systems, it is proved that if the disease basic reproduction number is greater than unity, the system is permanent. By means of Lyapunov functionals and LaSalle's invariance principle, sufficient conditions are obtained for the global stability of the endemic‐coexistence equilibrium, the disease‐free equilibrium and the predator‐extinction equilibrium of the system, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The influence of Casimir force on the nonlinear behavior of nanoscale electrostatic actuators is studied in this paper. A one degree of freedom mass-spring model is adopted and the bifurcation properties of the actuators are obtained. With the change of the geometrical dimensions, the number of equilibrium point varies from zero to two. Stability analysis shows that one equilibrium point is Hopf point and the other is unstable saddle point when there are two equilibrium points. We also obtain the phase portraits, in which the periodic orbits exist around the Hopf point, and a homoclinic orbit passes through the unstable saddle point.  相似文献   

12.
The Bogdanov‐Takens bifurcations of a Leslie‐Gower predator‐prey model with Michaelis‐Menten–type prey harvesting were studied. In the paper “Diff. Equ. Dyn. Syst. 20(2012), 339‐366,” Gupta et al proved that the Leslie‐Gower predator‐prey model with Michaelis‐Menten–type prey harvesting has rich dynamics. Some equilibria of codimension 1 and their bifurcations were discussed. In this paper, we find that the model has an equilibrium of codimensions 2 and 3. We also prove analytically that the model undergoes Bogdanov‐Takens bifurcations (cusp cases) of codimensions 2 and 3. Hence, the model can have 2 limit cycles, coexistence of a stable homoclinic loop and an unstable limit cycle, supercritical and subcritical Hopf bifurcations, and homoclinic bifurcation of codimension 1 as the values of parameters vary. Moreover, several numerical simulations are conducted to illustrate the validity of our results.  相似文献   

13.
A system of three coupled van der Pol oscillators with delay is considered. Hopf bifurcations at the zero equilibrium as the delay increases are exhibited. The existence and stability of multiple periodic solutions are established using a symmetric Hopf bifurcation result of Wu (Trans. Amer. Math. Soc. 350 (1998) 4799-4838).  相似文献   

14.
In this paper, we consider a model described the survival of red blood cells in animal. Its dynamics are studied in terms of local and global Hopf bifurcations. We show that a sequence of Hopf bifurcations occur at the positive equilibrium as the delay crosses some critical values. Using the reduced system on the center manifold, we also obtain that the periodic orbits bifurcating from the positive equilibrium are stable in the center manifold, and all Hopf bifurcations are supercritical. Further, particular attention is focused on the continuation of local Hopf bifurcation. We show that global Hopf bifurcations exist after the second critical value of time delay.  相似文献   

15.
We investigate the double Hopf bifurcation at zero equilibrium point. Firstly, we give the critical values of Hopf and double Hopf bifurcations. Secondly, we implement the normal form method and the center manifold theory for delay-coupled limit cycle oscillators, and derive the universal unfolding and a complete bifurcation diagram of the system. Thirdly, many interesting phenomena, such as attractive periodic motion and three-dimensional invariant torus, are observed using numerical simulation. Finally, the normal forms of several strong resonant cases are listed.  相似文献   

16.
A symmetric BAM neural network model with delay is considered. Some results of Hopf bifurcations occurring at the zero equilibrium as the delay increases are exhibited. The existence of multiple periodic solutions is established using a symmetric Hopf bifurcation result of Wu [J. Wu, Symmetric functional differential equations and neural networks with memory, Transactions of the American Mathematical Society 350 (12) (1998) 4799–4838].  相似文献   

17.
In this paper, a reaction‐diffusion predator–prey system that incorporates the Holling‐type II and a modified Leslie‐Gower functional responses is considered. For ODE, the local stability of the positive equilibrium is investigated and the specific conditions are obtained. For partial differential equation, we consider the dissipation and persistence of solutions, the Turing instability of the equilibrium solutions, and the Hopf bifurcation. By calculating the normal form, we derive the formulae, which can determine the direction and the stability of Hopf bifurcation according to the original parameters of the system. We also use some numerical simulations to illustrate our theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, the dynamics of a system of two van der Pol equations with a finite delay are investigated. We show that there exist the stability switches and a sequence of Hopf bifurcations occur at the zero equilibrium when the delay varies. Using the theory of normal form and the center manifold theorem, the explicit expression for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived.  相似文献   

19.
This paper deals with a diffusive toxin producing phytoplankton‐zooplankton model with maturation delay. By analyzing eigenvalues of the characteristic equation associated with delay parameter, the stability of the positive equilibrium and the existence of Hopf bifurcation are studied. Explicit results are derived for the properties of bifurcating periodic solutions by means of the normal form theory and the center manifold reduction for partial functional differential equations. Numerical simulations not only agree with the theoretical analysis but also exhibit the complex behaviors such as the period‐3, 5, 6, 7, 8, 11, and 12 solutions, cascade of period‐doubling bifurcation in period‐2, 4, quasi‐periodic solutions, and chaos. The key observation is that time delay may control harmful algae blooms (HABs). Moreover, numerical simulations show that the chaotic states induced by the period‐doubling bifurcation are purely temporal, which is stationary in space and oscillatory in time. The investigations may provide some new insights on harmful phytoplankton blooms.  相似文献   

20.
The existence of one non‐trivial solution for a second‐order impulsive differential inclusion is established. More precisely, a recent critical point result is exploited, in order to prove the existence of a determined open interval of positive eigenvalues for which the considered problem admits at least one non‐trivial anti‐periodic solution. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号