首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A well‐posedness result for a time‐shift invariant class of evolutionary operator equations involving material laws with fractional time‐integrals of order α ? ]0, 1[ is considered. The fractional derivatives are defined via a function calculus for the (time‐)derivative established as a normal operator in a suitable L2 type space. Employing causality, we show that the fractional derivatives thus obtained coincide with the Riemann‐Liouville fractional derivative. We exemplify our results by applications to a fractional Fokker‐Planck equation, equations describing super‐diffusion and sub‐diffusion processes, and a Kelvin‐Voigt type model in fractional visco‐elasticity. Moreover, we elaborate a suitable perspective to deal with initial boundary value problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we consider the analytical solutions of fractional partial differential equations (PDEs) with Riesz space fractional derivatives on a finite domain. Here we considered two types of fractional PDEs with Riesz space fractional derivatives such as Riesz fractional diffusion equation (RFDE) and Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second‐order space derivative with the Riesz fractional derivative of order α∈(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first‐order and second‐order space derivatives with the Riesz fractional derivatives of order β∈(0,1] and of order α∈(1,2] respectively. Here the analytic solutions of both the RFDE and RFADE are derived by using modified homotopy analysis method with Fourier transform. Then, we analyze the results by numerical simulations, which demonstrate the simplicity and effectiveness of the present method. Here the space fractional derivatives are defined as Riesz fractional derivatives. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
This article presents a finite element scheme with Newton's method for solving the time‐fractional nonlinear diffusion equation. For time discretization, we use the fractional Crank–Nicolson scheme based on backward Euler convolution quadrature. We discuss the existence‐uniqueness results for the fully discrete problem. A new discrete fractional Gronwall type inequality for the backward Euler convolution quadrature is established. A priori error estimate for the fully discrete problem in L2(Ω) norm is derived. Numerical results based on finite element scheme are provided to validate theoretical estimates on time‐fractional nonlinear Fisher equation and Huxley equation.  相似文献   

4.
The determination of a space‐dependent source term along with the solution for a 1‐dimensional time fractional diffusion equation with nonlocal boundary conditions involving a parameter β>0 is considered. The fractional derivative is generalization of the Riemann‐Liouville and Caputo fractional derivatives usually known as Hilfer fractional derivative. We proved existence and uniqueness results for the solution of the inverse problem while over‐specified datum at 2 different time is given. The over‐specified datum at 2 time allows us to avoid initial condition in terms of fractional integral associated with Hilfer fractional derivative.  相似文献   

5.
In this paper, we consider a two‐dimensional multi‐term time‐fractional Oldroyd‐B equation on a rectangular domain. Its analytical solution is obtained by the method of separation of variables. We employ the finite difference method with a discretization of the Caputo time‐fractional derivative to obtain an implicit difference approximation for the equation. Stability and convergence of the approximation scheme are established in the L ‐norm. Two examples are given to illustrate the theoretical analysis and analytical solution. The results indicate that the present numerical method is effective for this general two‐dimensional multi‐term time‐fractional Oldroyd‐B model.  相似文献   

6.
An inverse problem of determining a time‐dependent source term from the total energy measurement of the system (the over‐specified condition) for a space‐time fractional diffusion equation is considered. The space‐time fractional diffusion equation is obtained from classical diffusion equation by replacing time derivative with fractional‐order time derivative and Sturm‐Liouville operator by fractional‐order Sturm‐Liouville operator. The existence and uniqueness results are proved by using eigenfunction expansion method. Several special cases are discussed, and particular examples are provided.  相似文献   

7.
A high‐accuracy numerical approach for a nonhomogeneous time‐fractional diffusion equation with Neumann and Dirichlet boundary conditions is described in this paper. The time‐fractional derivative is described in the sense of Riemann‐Liouville and discretized by the backward Euler scheme. A fourth‐order optimal cubic B‐spline collocation (OCBSC) method is used to discretize the space variable. The stability analysis with respect to time discretization is carried out, and it is shown that the method is unconditionally stable. Convergence analysis of the method is performed. Two numerical examples are considered to demonstrate the performance of the method and validate the theoretical results. It is shown that the proposed method is of order Ox4 + Δt2 ? α) convergence, where α ∈ (0,1) . Moreover, the impact of fractional‐order derivative on the solution profile is investigated. Numerical results obtained by the present method are compared with those obtained by the method based on standard cubic B‐spline collocation method. The CPU time for present numerical method and the method based on cubic B‐spline collocation method are provided.  相似文献   

8.
The simplest and probably the most familiar model of statistical processes in the physical sciences is the random walk. This simple model has been applied to all manner of phenomena, ranging from DNA sequences to the firing of neurons. Herein we extend the random walk model beyond that of mimicking simple statistics to include long‐time memory in the dynamics of complex phenomena. We show that complexity can give rise to fractional‐difference stochastic processes whose continuum limit is a fractional Langevin equation, that is, a fractional differential equation driven by random fluctuations. Furthermore, the index of the inverse power‐law spectrum in many complex processes can be related to the fractional derivative index in the fractional Langevin equation. This fractional stochastic model suggests that a scaling process guides the dynamics of many complex phenomena. The alternative to the fractional Langevin equation is a fractional diffusion equation describing the evolution of the probability density for certain kinds of anomalous diffusion. © 2006 Wiley Periodicals, Inc. Complexity 11: 33–43, 2006  相似文献   

9.
10.
In this paper, we consider a Cauchy problem of the time fractional diffusion equation (TFDE). Such problem is obtained from the classical diffusion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α (0 < α ≤ 1). We show that the Cauchy problem of TFDE is severely ill-posed and further apply a new regularization method to solve it based on the solution given by the Fourier method. Convergence estimates in the interior and on the boundary of solution domain are obtained respectively under different a-priori bound assumptions for the exact solution and suitable choices of regularization parameters. Finally, numerical examples are given to show that the proposed numerical method is effective.  相似文献   

11.
In this paper, we consider a time fractional diffusion equation on a finite domain. The equation is obtained from the standard diffusion equation by replacing the first-order time derivative by a fractional derivative (of order 0 < α < 1 ). We propose a computationally effective implicit difference approximation to solve the time fractional diffusion equation. Stability and convergence of the method are discussed. We prove that the implicit difference approximation (IDA) is unconditionally stable, and the IDA is convergent withO(Τ +h 2), where Τ andh are time and space steps, respectively. Some numerical examples are presented to show the application of the present technique.  相似文献   

12.
This paper is devoted to the well‐posedness for time‐space fractional Ginzburg‐Landau equation and time‐space fractional Navier‐Stokes equations by α‐stable noise. The spatial regularity and the temporal regularity of the nonlocal stochastic convolution are firstly established, and then the existence and uniqueness of the global mild solution are obtained by the Banach fixed point theorem and Mittag‐Leffler functions, respectively. Numerical simulations for time‐space fractional Ginzburg‐Landau equation are provided to verify the analysis results.  相似文献   

13.
In this paper, an inverse problem for space‐fractional backward diffusion equation, which is highly ill‐posed, is considered. This problem is obtained from the classical diffusion equation by replacing the second‐order space derivative with a Riesz–Feller derivative of order α ∈ (0,2]. We show that such a problem is severely ill‐posed, and further present a simplified Tikhonov regularization method to deal with this problem. Convergence estimate is presented under a priori choice of regularization parameter. Numerical experiments are given to illustrate the accuracy and efficiency of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, using the Riemann‐Liouville fractional integral with respect to another function and the ψ?Hilfer fractional derivative, we propose a fractional Volterra integral equation and the fractional Volterra integro‐differential equation. In this sense, for this new fractional Volterra integro‐differential equation, we study the Ulam‐Hyers stability and, also, the fractional Volterra integral equation in the Banach space, by means of the Banach fixed‐point theorem. As an application, we present the Ulam‐Hyers stability using the α‐resolvent operator in the Sobolev space .  相似文献   

15.
In this article, we consider the finite element methods (FEM) for Grwünwald–Letnikov time-fractional diffusion equation, which is obtained from the standard two-dimensional diffusion equation by replacing the first-order time derivative with a fractional derivative (of order α, with 0?h r+1?+?τ2-α), where h, τ and r are the space step size, time step size and polynomial degree, respectively. A numerical example is presented to verify the order of convergence.  相似文献   

16.
The diffusion problem in a subdiffusive medium is formulated by using the fractional differential operator. In this paper, we consider a fractional differential equation with concentrated source. The existence of the solution in a finite time is given. The finite time blow‐up criteria for the solution of the problem is established, and the location of the blow‐up point is investigated.  相似文献   

17.
We consider the two‐dimensional convection–diffusion equation with a fractional Laplacian, supplemented with step‐like initial conditions. We show that the large time behavior of solutions to this IVP is described either by rarefaction waves, or diffusion waves, or suitable self‐similar solutions, depending on the order of the fractional dissipation and on a direction of a convective nonlinearity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
This study presents a robust modification of Chebyshev ? ‐weighted Crank–Nicolson method for analyzing the sub‐diffusion equations in the Caputo fractional sense. In order to solve the problem, by discretization of the sub‐fractional diffusion equations using Taylor's expansion a linear system of algebraic equations that can be analyzed by numerical methods is presented. Furthermore, consistency, convergence, and stability analysis of the suggested method are discussed. In this framework, compact structures of sub‐diffusion equations are considered as prototype examples. The main advantage of the proposed method is that, it is more efficient in terms of CPU time, computational cost and accuracy in comparing with the existing ones in open literature.  相似文献   

19.
We consider a class of nonlinear integro-differential equations involving a fractional power of the Laplacian and a nonlocal quadratic nonlinearity represented by a singular integral operator. Initially, we introduce cut-off versions of this equation, replacing the singular operator by its Lipschitz continuous regularizations. In both cases we show the local existence and global uniqueness in L1Lp. Then we associate with each regularized equation a stable-process-driven nonlinear diffusion; the law of this nonlinear diffusion has a density which is a global solution in L1 of the cut-off equation. In the next step we remove the cut-off and show that the above densities converge in a certain space to a solution of the singular equation. In the general case, the result is local, but under a more stringent balance condition relating the dimension, the power of the fractional Laplacian and the degree of the singularity, it is global and gives global existence for the original singular equation. Finally, we associate with the singular equation a nonlinear singular diffusion and prove propagation of chaos to the law of this diffusion for the related cut-off interacting particle systems. Depending on the nature of the singularity in the drift term, we obtain either a strong pathwise result or a weak convergence result. Mathematics Subject Classifications (2000) 60K35, 35S10.  相似文献   

20.
This article discusses the analyticity and the long‐time asymptotic behavior of solutions to space‐time fractional diffusion‐reaction equations in . By a Laplace transform argument, we prove that the decay rate of the solution as t is dominated by the order of the time‐fractional derivative. We consider the decay rate also in a bounded domain. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号