首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Maximum blood velocity estimates are frequently required in diagnostic applications, including carotid stenosis evaluation, arteriovenous fistula inspection, and maternal-fetal examinations. However, the currently used methods for ultrasound measurements are inaccurate and often rely on applying heuristic thresholds to a Doppler power spectrum. A new method that uses a mathematical model to predict the correct threshold that should be used for maximum velocity measurements has recently been introduced. Although it is a valuable and deterministic tool, this method is limited to parabolic flows insonated by uniform pressure fields. In this work, a more generalized technique that overcomes such limitations is presented. The new approach, which uses an extended Doppler spectrum model, has been implemented in an experimental set-up based on a linear array probe that transmits defocused steered waves. The improved model has been validated by Field II simulations and phantom experiments on tubes with diameters between 2 mm and 8 mm. Using the spectral threshold suggested by the new model significantly higher accuracy estimates of the peak velocity can be achieved than are now clinically attained, including for narrow beams and non-parabolic velocity profiles. In particular, an accuracy of +1.2 ± 2.5 cm/s has been obtained in phantom measurements for velocities ranging from 20 to 80 cm/s. This result represents an improvement that can significantly affect the way maximum blood velocity is investigated today.  相似文献   

2.

Purpose

To investigate an effective time-resolved variable-density random undersampling scheme combined with an efficient parallel image reconstruction method for highly accelerated aortic 4D flow MR imaging with high reconstruction accuracy.

Materials and Methods

Variable-density Poisson-disk sampling (vPDS) was applied in both the phase-slice encoding plane and the temporal domain to accelerate the time-resolved 3D Cartesian acquisition of flow imaging. In order to generate an improved initial solution for the iterative self-consistent parallel imaging method (SPIRiT), a sample-selective view sharing reconstruction for time-resolved random undersampling (STIRRUP) was introduced. The performance of different undersampling and image reconstruction schemes were evaluated by retrospectively applying those to fully sampled data sets obtained from three healthy subjects and a flow phantom.

Results

Undersampling pattern based on the combination of time-resolved vPDS, the temporal sharing scheme STIRRUP, and parallel imaging SPIRiT, were able to achieve 6-fold accelerated 4D flow MRI with high accuracy using a small number of coils (N = 5). The normalized root mean square error between aorta flow waveforms obtained with the acceleration method and the fully sampled data in three healthy subjects was 0.04 ± 0.02, and the difference in peak-systolic mean velocity was − 0.29 ± 2.56 cm/s.

Conclusion

Qualitative and quantitative evaluation of our preliminary results demonstrate that time-resolved variable-density random sampling is efficient for highly accelerating 4D flow imaging while maintaining image reconstruction accuracy.  相似文献   

3.
Zheng Y 《Ultrasonics》2009,49(1):19-25
Denoising of Doppler signal is a preliminary and important step in medical ultrasound imaging. To denoise quadrature Doppler signal from bi-directional flow, we propose a novel method based on matching pursuit in this paper. The proposed method is an iterative decomposition algorithm which decomposes the original Doppler signal into a linear expansion of atoms in a time-frequency dictionary. The time-frequency dictionary is similar to Fourier transform domain and the atoms are similar to orthogonal bases in Fourier transform. In each step of the iteration, the atom which gives the largest inner product with the analyzed signal is selected from the dictionary, and the contribution of this atom is subtracted from the Doppler signal. This process is repeated on the residue until the SNR reaches the maximum. The linear expansion of the selected atoms is the denoised signal. Simulations were conducted on a simulation model with a sampling rate of 12.8 kHz. When the original SNRs are 0 dB, 2 dB, 4 dB, 6 dB, 8 dB, 10 dB, the proposed method can improve the SNR for 7.9 dB, 7.8 dB, 7.5 dB, 7.3 dB, 7.05 dB, 6.8 dB respectively, reduce the root mean square error (RMSE) of the mean frequency waveform to 0.0441 kHz, 0.0303 kHz, 0.0245 kHz, 0.0215 kHz, 0.0161 kHz, 0.0125 kHz respectively, and suppress the RMSE of the spectral width waveform to 0.1774 kHz, 0.0591 kHz, 0.0486 kHz, 0.0170 kHz, 0.0145 kHz, 0.0117 kHz respectively. Preliminary in vivo evaluation was also carried out on a healthy 33-year-old male using B-K medical A/S 3535 ultrasound scanner, and the results showed that the proposed method can effectively enhance the Doppler spectrogram.  相似文献   

4.
Yeh CK  Chen JJ  Li ML  Luh JJ  Chen JJ 《Ultrasonics》2009,49(2):226-230

Objective

Achilles tendinitis is a common clinical problem with many treatment modalities, including physical therapy, exercise and therapeutic ultrasound. However, evaluating the effects of current therapeutic modalities and studying the therapeutic mechanism(s) in vivo remains problematic. In this study, we attempted to observe the morphology and microcirculation changes in mouse Achilles tendons between pre- and post-treatment using high-frequency (25 MHz) ultrasound imaging. A secondary aim was to assess the potential of high-frequency ultrasound in exploring therapeutic mechanisms in small-animal models in vivo.

Methods

A collagenase-induced mouse model of Achilles tendinitis was adopted, and 5 min treatment of continuous-mode low-frequency (45 kHz) ultrasound with 47 mW/cm2 maximum intensity and 16.3 cm2 effective beam radiating area was applied. The B-mode images showed no focal hypoechoic regions in normal Achilles tendons either pre- or post-treatment. The Doppler power energy and blood flow rate were measured within the peritendinous space of the Achilles tendon.

Conclusion

An increase in the microcirculation was observed soon after the low-frequency ultrasound treatment, which was due to immediate induction of vascular dilatation. The results suggest that applying high-frequency Doppler imaging to small-animal models will be an invaluable aid in explorations of the therapeutic mechanism(s). Our future work includes using imaging to assess microcirculation changes in tendinitis between before and after treatment over a long time period, which is expected to yield useful physiological data for future human studies.  相似文献   

5.

Background

Over the past two decades elective valve-sparing aortic root replacement (V-SARR) has become more common in the treatment of patients with aortic root and ascending aortic aneurysms. Currently there are little data available to predict complications in the post-operative population. The study goal was to determine if altered flow patterns in the thoracic aorta, as measured by MRI, are associated with complications after V-SARR.

Methods

Time-resolved three-dimensional phase-contrast MRI (4D flow) was used to image 12 patients with Marfan syndrome after V-SARR. The patients were followed up for an average of 5.8 years after imaging and 8.2 years after surgery. Additionally 5 volunteers were imaged for comparison. Flow profiles were visualized during peak systole using streamlines. Wall shear stress estimates and normalized flow displacement were evaluated at multiple planes in the thoracic aorta.

Results

During the follow-up period, a single patient developed a Stanford Type B aortic dissection. At initial imaging, prior to the development of the dissection, the patient had altered flow patterns, wall shear stress estimates, and increased normalized flow displacement in the thoracic aorta in comparison to the remaining V-SARR patients and volunteers.

Conclusions

This is the first follow-up study of patients after 4D flow imaging. An aortic dissection developed in one patient with altered flow patterns and hemodynamic stresses in the thoracic aorta. These results suggest that flow and altered hemodynamics may play a role in the development of post-operative intramural hematomas and dissections.  相似文献   

6.
An idea of using laser Doppler velocimeter (LDV) to measure the velocity for the vehicle inertial navigation system was put forward. The principle of measuring its own velocity with laser Doppler technique was elaborated and reference-beam LDV was designed. Then Doppler signal was processed by tracking filter, frequency spectrum refinement and frequency spectrum correction algorithm. The result of theory and experiment showed that the reference-beam LDV solved the problem that dual-beam LDV cannot be used for measuring when the system was out of focus. Doppler signal was tracked so that signal-to-noise ratio was improved, and the accuracy of the system was enhanced by the technology of frequency spectrum refinement and correction. The measurement mean error was less than 1.5% in velocity range of 0-30 m/s.  相似文献   

7.
Hirata S  Kurosawa MK 《Ultrasonics》2012,52(7):873-879
Real-time distance measurement of a moving object with high accuracy and high resolution using an ultrasonic wave is difficult due to the influence of the Doppler effect or the limit of the calculation cost of signal processing. An over-sampling signal processing method using a pair of LPM signals has been proposed for ultrasonic distance and velocity measurement of moving objects with high accuracy and high resolution. The proposed method consists of cross correlation by single-bit signal processing, high-resolution Doppler velocity estimation with wide measurement range and low-calculation-cost Doppler-shift compensation. The over-sampling cross-correlation function is obtained from cross correlation by single-bit signal processing with low calculation cost. The Doppler velocity and distance of the object are determined from the peak interval and peak form in the cross-correlation function by the proposed method of Doppler velocity estimation and Doppler-shift compensation. In this paper, the proposed method of Doppler-shift compensation is improved. Accuracy of the determined distance was improved from approximately within ±140 μm in the previous method to approximately within ±10 μm in computer simulations. Then, the proposed method of Doppler velocity estimation is evaluated. In computer simulations, accuracy of the determined Doppler velocity and distance were demonstrated within ±8.471 mm/s and ±13.87 μm. In experiments, Doppler velocities of the motorized stage could be determined within ±27.9 mm/s.  相似文献   

8.
The details of a new approach for absolute calibration of microphones, based on the direct measurement of acoustic particle velocity using laser Doppler velocimetry (LDV), are presented and discussed. The calibration technique is carried out inside a tube in which plane waves propagate and closed by a rigid termination. The method developed proposes to estimate the acoustic pressure with two velocity measurements and a physical model. Minimum theoretical uncertainties on the estimated pressure and minimum measurable pressure are calculated from the Cramer Rao bounds on the estimated acoustic velocity amplitude and phase. These uncertainties and the minimum measurable pressure help to optimize the experimental set up. Acoustic pressure estimations performed with LDV are compared with acoustic pressures obtained with a reference microphone. Measurements lead to a minimum bias of 0.006 dB and a minimum uncertainty of 0.013 dB on the acoustic pressure estimation for frequencies 1360 Hz and 680 Hz.  相似文献   

9.
This work reports the potential use of high-overtone self-focusing acoustic transducers for high-frequency ultrasonic Doppler. By using harmonic frequencies of a thick bulk Lead Zirconate Titanate (PZT) transducer with a novel air-reflector Fresnel lens, we obtained strong ultrasound signals at 60 MHz (3rd harmonic) and 100 MHz (5th harmonic). Both experimental and theoretical analysis has demonstrated that the transducers can be applied to Doppler systems with high frequencies up to 100 MHz.  相似文献   

10.
Diffusion weighted magnetic resonance imaging (DWI) has been mostly acquired using single-shot echo-planar imaging (ss EPI) to minimize motion induced artifacts. The spatial resolution, however, is inherently limited in ss EPI especially for abdominal imaging, even with the advances in parallel imaging. A novel method of reduced Field of View ss EPI (rFOV ss EPI) has achieved high resolution DWI in human carotid artery, spinal cord with reduced blurring and higher spatial resolution than conventional ss EPI, but it has not been used to pancreas imaging. In the work, comparisons between the full FOV ss-DW EPI and rFOV ss-DW EPI in image qualities and ADC values of pancreatic tumors and normal pancreatic tissues were performed to demonstrate the feasibility of pancreatic high resolution rFOV DWI. There were no significant differences in the mean ADC values between full FOV DWI and rFOV DWI for the 17 subjects using b = 600 s/mm2 (P = 0.962). However, subjective scores of image quality was significantly higher at rFOV ss DWI (P = 0.008 and 0.000 for b-value = 0 s/mm2 and 600 s/mm2 respectively). The spatial resolution of DWI for pancreas was increased by a factor of over 2.0 (from almost 3.0 mm/pixel to 1.25 mm/pixel) using rFOV ss EPI technique. Reduced FOV ss EPI can provide good DW images and is promising to benefit applications for pancreatic diseases.  相似文献   

11.
The purpose of this study was to prospectively compare noninvasive, quantitative measures of vascularity obtained from four contrast enhanced ultrasound (US) techniques to four invasive immunohistochemical markers of tumor angiogenesis in a large group of murine xenografts. Glioma (C6) or breast cancer (NMU) cells were implanted in 144 rats. The contrast agent Optison (GE Healthcare, Princeton, NJ) was injected in a tail vein (dose: 0.4 ml/kg). Power Doppler imaging (PDI), pulse-subtraction harmonic imaging (PSHI), flash-echo imaging (FEI), and Microflow imaging (MFI; a technique creating maximum intensity projection images over time) was performed with an Aplio scanner (Toshiba America Medical Systems, Tustin, CA) and a 7.5 MHz linear array. Fractional tumor neovascularity was calculated from digital clips of contrast US, while the relative area stained was calculated from specimens. Results were compared using a factorial, repeated measures ANOVA, linear regression and z-tests. The tortuous morphology of tumor neovessels was visualized better with MFI than with the other US modes. Cell line, implantation method and contrast US imaging technique were significant parameters in the ANOVA model (p < 0.05). The strongest correlation determined by linear regression in the C6 model was between PSHI and percent area stained with CD31 (r = 0.37, p < 0.0001). In the NMU model the strongest correlation was between FEI and COX-2 (r = 0.46, p < 0.0001). There were no statistically significant differences between correlations obtained with the various US methods (p > 0.05). In conclusion, the largest study of contrast US of murine xenografts to date has been conducted and quantitative contrast enhanced US measures of tumor neovascularity in glioma and breast cancer xenograft models appear to provide a noninvasive marker for angiogenesis; although the best method for monitoring angiogenesis was not conclusively established.  相似文献   

12.
Diffusion tensor imaging (DTI) of in-vivo human brain provides insights into white matter anatomical connectivity, but little is known about measurement difference biases and reliability of data obtained with last generation high field scanners (> 3 T) as function of MRI acquisition and analyses variables. Here we assess the impact of acquisition (voxel size: 1.8 × 1.8 × 1.8, 2 × 2 × 2 and 2.5 × 2.5 × 2.5 mm3, b-value: 700, 1000 and 1300 s/mm2) and analysis variables (within-session averaging and co-registration methods) on biases and test-retest reproducibility of some common tensor derived quantities like fractional anisotropy (FA), mean diffusivity (MD), axial and radial diffusivity in a group of healthy subjects at 4 T in three regions: arcuate fasciculus, corpus callosum and cingulum. Averaging effects are also evaluated on a full-brain voxel based approach. The main results are: i) group FA and MD reproducibility errors across scan sessions are on average double of those found in within-session repetitions (≈ 1.3 %), regardless of acquisition protocol and region; ii) within-session averaging of two DTI acquisitions does not improve reproducibility of any of the quantities across sessions at the group level, regardless of acquisition protocol; iii) increasing voxel size biased MD, axial and radial diffusivities to higher values and FA to lower values; iv) increasing b-value biased all quantities to lower values, axial diffusivity showing the strongest effects; v) the two co-registration methods evaluated gave similar bias and reproducibility results. Altogether these results show that reproducibility of FA and MD is comparable to that found at lower fields, not significantly dependent on pre-processing and acquisition protocol manipulations, but that the specific choice of acquisition parameters can significantly bias the group measures of FA, MD, axial and radial diffusivities.  相似文献   

13.

Purpose

To determine whether healed myocardial infarction alters dynamic contrast-enhancement (DCE) curve shapes as well as late gadolinium-enhancement (LGE).

Materials and methods

Twenty patients with chronic myocardial infarction underwent MR imaging at 1.5 T with blood and myocardial T1 measurements before and after contrast administration for forty minutes. Viable and infarcted myocardial partition coefficients were calculated using multipoint slope methods for ten different DCE sampling intervals and windows. Partition coefficients and coefficients of determination were compared with paired statistical tests to assess the linearity of DCE curve shapes over the 40 min time period.

Results

Calculated partition coefficients did not vary significantly between methods (p = 0.325) for viable myocardium but did differ for infarcted myocardium (p < 0.001), indicating a difference in infarcted DCE. There was a significant difference between viable and infarcted myocardial partition coefficients estimates for all methods with the exception of methods that included measurements during the first 10 min after contrast agent administration.

Conclusion

Myocardial partition coefficients calculated from a slope calculation vary in healed myocardial infarction based on the selection of samples due to non-linear DCE curve shapes. Partition coefficient calculations are insensitive to data sampling effects in viable myocardium due to linear DCE curve shapes.  相似文献   

14.
超声动态向量血流成像的产品化实现   总被引:1,自引:1,他引:0  
传统超声彩色多普勒成像测量的是血流沿超声传播方向上的速度分量,故无法得到垂直于超声传播方向的血流。向量血流成像是一种更加先进的超声血流成像技术。它不受角度限制,可以直接计算出血流速度的大小和方向。本文总结了现有多种超声向量血流成像技术的特点和发展情况,并从产品化实现的角度分析了各项技术的优缺点。从超声系统发射接收、血流成像、向量速度方向合成、显示等几个方面详述了迈瑞超声向量血流成像技术产品化实现过程中遇到的主要问题及解决方案。实验采用了中科院声学所研制的超声多普勒仿血流体模,通过向量血流成像和脉冲多普勒成像分别测量体模的仿血流速度。将向量血流成像直接计算出来的速度值与脉冲多普勒经过角度校正得到的速度进行对比。在不同条件下,经过多次测量,二者的平均相对误差均在10%以内。  相似文献   

15.
The saturation absorption technique is applied to the 87Rb 2S1/2 F″ = 2 → 2P3/2 F′ = 1, 2 and 3 transitions to study the effect of velocity changing collisions (VCC). The VCC caused Doppler pedestal increases with argon pressure from 0 to 110 mTorr and decreases with modulation frequencies of 700-3200 Hz. The resonances of the velocity selective, saturated optical pumping are washed out for pressure of 110 mTorr. The magnitude of the Doppler pedestal relative to the homogeneous features, yields a rate for velocity changing collisions of 6.5 ± 0.2 × 10−10 cm3 s−1.  相似文献   

16.

Purpose

To investigate the correlation between perfusion-related parameters obtained with intravoxel incoherent motion (IVIM) and classical perfusion parameters obtained with dynamic contrast-enhanced (DCE) magnetic resonance imaging in patients with head and neck squamous cell carcinoma (HNSCC), and to compare direct and asymptotic fitting, the pixel-by-pixel approach, and a region of interest (ROI)-based approach respectively for IVIM parameter calculation.

Materials and methods

Seventeen patients with HNSCC were included in this retrospective study. All magnetic resonance (MR) scanning was performed using a 3 T MR unit. Acquisition of IVIM was performed using single-shot spin-echo echo-planar imaging with three orthogonal gradients with 12 b-values (0, 10, 20, 30, 50, 80, 100, 200, 400, 800, 1000, and 2000). Perfusion-related parameters of perfusion fraction ‘f’ and the pseudo-diffusion coefficient ‘D*’ were calculated from IVIM data by using least square fitting with the two fitting methods of direct and asymptotic fitting, respectively. DCE perfusion was performed in a total of 64 dynamic phases with a 3.2-s phase interval. The two-compartment exchange model was used for the quantification of tumor blood volume (TBV) and tumor blood flow (TBF). Each tumor was delineated with a polygonal ROI for the calculation of f, f ? D* performed using both the pixel-by-pixel approach and the ROI-based approach. In the pixel-by-pixel approach, after fitting each pixel to obtain f, f ? D* maps, the mean value in the delineated ROI on these maps was calculated. In the ROI-based approach, the mean value of signal intensity was calculated within the ROI for each b-value in IVIM images, and then fitting was performed using these values. Correlations between f in a total of four combinations (direct or asymptotic fitting and pixel-by-pixel or ROI-based approach) and TBV were respectively analyzed using Pearson's correlation coefficients. Correlations between f ? D* and TBF were also similarly analyzed.

Results

In all combinations of f and TBV, f ? D* and TBF, there was a significant correlation. In the comparison of f and TBV, a moderate correlation was observed only between f obtained by direct fitting with the pixel-by-pixel approach, whereas a good correlation was observed in the comparisons using the other three combinations. In the comparison of f ? D* and TBF, a good correlation was observed only with f ? D* obtained by asymptotic fitting with the ROI-based approach. In contrast, moderate correlations were observed in the comparisons using the other three combinations.

Conclusion

IVIM was found to be feasible for the analysis of perfusion-related parameters in patients with HNSCC. Especially, the combination of asymptotic fitting with the ROI-based approach was better correlated with DCE perfusion.  相似文献   

17.
The objective of this paper is to validate angle independent vector velocity methods for blood velocity estimation. Conventional Doppler ultrasound (US) only estimates the blood velocity along the US beam direction where the estimate is angle corrected assuming laminar flow parallel to vessel boundaries. This results in incorrect blood velocity estimates, when angle of insonation approaches 90° or when blood flow is non-laminar. Three angle independent vector velocity methods are evaluated in this paper: directional beamforming (DB), synthetic aperture flow imaging (STA) and transverse oscillation (TO). The performances of the three methods were investigated by measuring the stroke volume in the right common carotid artery of 11 healthy volunteers with magnetic resonance phase contrast angiography (MRA) as reference. The correlation with confidence intervals (CI) between the three vector velocity methods and MRA were: DB vs. MRA: R = 0.84 (p < 0.01, 95% CI: 0.49–0.96); STA vs. MRA: R = 0.71 (p < 0.05, 95% CI: 0.19–0.92) and TO vs. MRA: R = 0.91 (p < 0.01, 95% CI: 0.69–0.98). No significant differences were observed for any of the three comparisons (DB vs. MRA: p = 0.65; STA vs. MRA: p = 0.24; TO vs. MRA: p = 0.36). Bland–Altman plots were additionally constructed, and mean differences with limits of agreements (LoA) for the three comparisons were: DB vs. MRA = 0.17 ml (95% CI: −0.61–0.95) with LoA = −2.11–2.44 ml; STA vs. MRA = −0.55 ml (95% CI: −1.54–0.43) with LoA = −3.42–2.32 ml; TO vs. MRA = 0.24 ml (95% CI: −0.32–0.81) with LoA = −1.41–1.90 ml. According to the results, reliable volume flow estimates can be obtained with all three methods. The three US vector velocity techniques can yield quantitative insight into flow dynamics and visualize complex flow patterns, which potentially can give the clinician a novel tool for cardiovascular disease assessment.  相似文献   

18.
Recent studies described an “ultrafast” scanning method based on spatiotemporal (SPEN) principles. SPEN demonstrates numerous potential advantages over EPI-based alternatives, at no additional expense in experimental complexity. An important aspect that SPEN still needs to achieve for providing a competitive ultrafast MRI acquisition alternative, entails exploiting parallel imaging algorithms without compromising its proven capabilities. The present work introduces a combination of multi-band frequency-swept pulses simultaneously encoding multiple, partial fields-of-view, together with a new algorithm merging a Super-Resolved SPEN image reconstruction and SENSE multiple-receiving methods. This approach enables one to reduce both the excitation and acquisition times of sub-second SPEN acquisitions by the customary acceleration factor R, without compromises in either the method’s spatial resolution, SAR deposition, or capability to operate in multi-slice mode. The performance of these new single-shot imaging sequences and their ancillary algorithms were explored and corroborated on phantoms and human volunteers at 3 T. The gains of the parallelized approach were particularly evident when dealing with heterogeneous systems subject to major T2/T2* effects, as is the case upon single-scan imaging near tissue/air interfaces.  相似文献   

19.
Shen CC  Wu HH 《Ultrasonics》2012,52(2):238-243

Background

High-frequency Doppler imaging is highly potential for detection of blood flow in microcirculation. In a swept-scan system, however, the spectral broadening of tissue clutter limits the detectability of low-velocity flow signal. Conventionally, the scanning speed of transducer has to be reduced to alleviate the clutter interference but at the cost of imaging frame rate. For example, the blood velocity of 0.5 mm/s becomes detectable only with a scanning speed lower than 1 mm/s. In this study, an alternative method is examined by suppressing the clutter magnitude to reduce the interference to flow signal without sacrificing scanning speed.

Methods

The method of third harmonic (3f0) transmit phasing can suppress the tissue harmonic clutter by transmitting at the fundamental and the additional 3f0 frequencies to achieve mutual cancellation between the frequency-sum and the frequency-difference components of the second harmonic signal. With 3f0 transmit phasing, the cut-off frequency of wall filtering can be reduced to preserve low-velocity flow without compromising the frame rate.

Results

Our results indicate that the 3f0 transmit phasing effectively reduces the harmonic clutter magnitude and thus improves the flow signal-to-clutter ratio. Compared to the conventional counterpart, the clutter-suppressed color flow and power Doppler images show fewer clutter artifacts and is capable of detecting more low-velocity flow of microbubbles. The resultant color-pixel-density also improves with clutter suppression.

Conclusion

For the swept-scan high-frequency (>20 MHz) system, 3f0 transmit phasing is capable of providing effective clutter suppression. With the same achievable scanning speed, the resultant Doppler image has higher sensitivity for low-velocity flow and is less susceptible to clutter artifacts.  相似文献   

20.
A pilot study was carried out to investigate the performance of ultrasound stiffness imaging methods namely Ultrasound Elastography Imaging (UEI) and Acoustic Radiation Force Impulse (ARFI) Imaging. Specifically their potential for characterizing different classes of solid mass lesions was analyzed using agar based tissue mimicking phantoms. Composite tissue mimicking phantom was prepared with embedded inclusions of varying stiffness from 50 kPa to 450 kPa to represent different stages of cancer. Acoustic properties such as sound speed, attenuation coefficient and acoustic impedance were characterized by pulse echo ultrasound test at 5 MHz frequency and they are ranged from (1564 ± 88 to 1671 ± 124 m/s), (0.6915 ± 0.123 to 0.8268 ± 0.755 db cm-1 MHz-1) and (1.61×106 ± 0.127 to 1.76 × 106 ± 0.045 kg m-2 s-1) respectively. The elastic property Young’s Modulus of the prepared samples was measured by conducting quasi static uni axial compression test under a strain rate of 0.5 mm/min upto 10 % strain, and the values are from 50 kPa to 450 kPa for a variation of agar concentration from 1.7% to 6.6% by weight. The composite phantoms were imaged by Siemens Acuson S2000 (Siemens, Erlangen, Germany) machine using linear array transducer 9L4 at 8 MHz frequency; strain and displacement images were collected by UEI and ARFI. Shear wave velocity 4.43 ± 0.35 m/s was also measured for high modulus contrast (18 dB) inclusion and X.XX m/s was found for all other inclusions. The images were pre processed and parameters such as Contrast Transfer Efficiency and lateral image profile were computed and reported. The results indicate that both ARFI and UEI represent the abnormalities better than conventional US B mode imaging whereas UEI enhances the underlying modulus contrast into improved strain contrast. The results are corroborated with literature and also with clinical patient images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号