首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the acoustic behaviour of porous media when the saturating fluid is high pressured. These observations are performed by ultrasonic transmission through a porous sample with variations of the static pressure of the saturating fluid. Previous works have experimentally demonstrated that a high frequency asymptotic equivalent fluid model allows to model the behaviour of such media for low pressure (between 0.2 and 6 bars). In this paper, in order to characterize high damping materials, measurements are performed for higher static pressure (up to 18 bars). It is shown that the behaviour of transmission coefficient and speed with pressure follows Biot’s theory. Moreover, measurements are dependant on temperature variations. Temperature variations have been accounted for in this study, but this does not explain entirely the high sensitivity of the transmission coefficient with static pressure. It remains that the mechanical properties of the porous medium vary strongly with the thermodynamic variables.  相似文献   

2.
3.
Ayrault C  Griffiths S 《Ultrasonics》2006,45(1-4):40-49
This paper presents a method for separating viscothermal and scattering losses in ultrasonic characterization of porous media. This method is based on variations of the static pressure of the saturating fluid. Experimental results were already presented in previous papers and the losses separation was verified experimentally. The aim of this paper is to present an analytic justification of this losses separation in the case of this experimental method and to show that it is possible to estimate acoustic parameters without the knowledge of scattering characteristics. The standard scattering length is used to renormalize speed and transmission through the porous medium, described as an equivalent fluid. Under certain assumptions corresponding to a weak scattering regime, it is shown how viscothermal and scattering losses can be separated easily without knowing scattering characteristics. Application of this model is presented in the case of weak scattering in a polyurethane foam and in the limit case of stronger scattering in a glass beads sample.  相似文献   

4.
This paper presents and demonstrates a method for using magnetic resonance imaging to measure local pressure of a fluid saturating a porous medium. The method is tested both in a static system of packed silica gel and in saturated sintered glass cylinders experiencing fluid flow. The fluid used contains 3% gas in the form of 3-mum average diameter gas filled 1,2-distearoyl-sn-glycero-3-phosphocholine (C18:0, MW: 790.16) liposomes suspended in 5% glycerol and 0.5% Methyl cellulose with water. Preliminary studies at 2.35 T demonstrate relative magnetic resonance signal changes of 20% per bar in bulk fluid for an echo time T(E)=40 ms, and 6-10% in consolidated porous media for T(E)=10 ms, over the range 0.8-1.8 bar for a spatial resolution of 0.1 mm(3) and a temporal resolution of 30 s. The stability of this solution with relation to applied pressure and methods for improving sensitivity are discussed.  相似文献   

5.
6.
We sketch our recent neutron scattering measurements of the phonon-roton (P-R) modes and Bose-Einstein condensation (BEC) of liquid 4He in porous media. The aim is to reveal the interdependence of BEC, well-defined P-R modes and superfluidity in helium confined to nanoscales and in disorder. In all porous media investigated to date, we observe well-defined P-R modes above Tc in the normal liquid phase, up to Tλ. Since well defined P-R modes are associated with BEC, this suggests that there is BEC above Tc in porous media. We interpret this as BEC localized to favorable regions separated by regions of normal fluid. At high pressures, p ≥25 bars, well defined P-R modes are no longer observed at lower wavevectors, Q ≤1.5 ?. At p ≈39 bars a roton is no longer observed. Work is in progress to explore whether loss of modes can be associated with a recently reported Quantum Phase Transition.  相似文献   

7.
The high pressure oxidation of dilute CO mixtures doped with 150-200 ppm of H2 has been studied behind reflected shock waves in the UIC high pressure single pulse shock tube. The experiments were performed over the temperature range from 1000 to 1500 K and pressures spanning 21-500 bars for stoichiometric (Φ = 1) and fuel lean (Φ = 0.5) oxidation. Stable species sampled from the shock tube were analyzed by standard GC, GC/MS techniques. The experimental data obtained in this work were simulated using a detailed model for H2/CO combustion that was validated against a variety of experimental observables/targets that span a wide range of conditions. These simulations have shown that within experimental error the model is able to capture the experimental trends for the lower pressure data sets (average nominal pressures of 24 and 43 bars). However the model under predicts the CO and O2 decay and subsequent CO2 formation for the higher pressure data sets (average nominal pressures of 256 and 450 bars). The current elevated pressure data sets span a previously unmapped regime and have served to probe HO2 radical reactions which appear to be among the most sensitive reactions in the model under these conditions. With updated rate parameters for a key HO2 radical reaction OH + HO2 = H2O + O2, the model is able to reconcile the elevated pressure data sets thereby extending its capability to an extreme range of conditions.  相似文献   

8.
The amplitude of the acoustic pressure required to nucleate a gas or vapor bubble in a fluid, and to have that bubble undergo an inertial collapse, is termed the inertial cavitation threshold. The magnitude of the inertial cavitation threshold is typically limited by mechanisms other than homogeneous nucleation such that the theoretical maximum is never achieved. However, the onset of inertial cavitation can be suppressed by increasing the static pressure of the fluid. The inertial cavitation threshold was measured in ultrapure water at static pressures up to 30?MPa (300 bars) by exciting a radially symmetric standing wave field in a spherical resonator driven at a resonant frequency of 25.5 kHz. The threshold was found to increase linearly with the static pressure; an exponentially decaying temperature dependence was also found. The nature and properties of the nucleating mechanisms were investigated by comparing the measured thresholds to an independent analysis of the particulate content and available models for nucleation.  相似文献   

9.
We show, using inelastic neutron scattering, that liquid helium in porous media, two gelsils and MCM-41, supports a phonon-roton mode up to a pressure of 36-37 bars only. Modes having the highest energy ("maxons") broaden and become unobservable at the lowest pressures (p approximately 26 bars) while rotons survive to the highest pressure. By comparing with the superfluid density observed by Yamamoto and co-workers in gelsil, we propose that there is a Bose glass phase containing islands of BEC surrounding the superfluid phase.  相似文献   

10.
We have investigated the structural and elastic properties of TiN at high pressures by the first-principles plane wave pseudopotential density functional theory method at applied pressures up to 45.4 GPa. The obtained normalized volume dependence of the resulting pressure is in excellent agreement with the experimental data investigated using synchrotron radial x-ray diffraction (RXRD) under nonhydrostatic compression up to 45.4 GPa in a diamond-anvil cell. Three independent elastic constants at zero pressure and high pressure are calculated. From the obtained elastic constants, the bulk modulus, Young's modulus, shear modulus, acoustic velocity and Debye temperature as a function of the applied pressure are also successfully obtained.  相似文献   

11.
M-type barium ferrite thin films were deposited onto sapphire (0 0 l) substrates by radio frequency magnetron sputtering. An ultra-thin layer about 20 nm was deposited and annealed before continuous deposition of the films up to 500 nm under different sputtering pressures: 0.2, 0.5, 0.8 and 1.0 Pa, respectively. It was found that the atomic ratios of Fe to Ba increased from 9.3 to 15.0 with the increase of the pressure. The films sputtered at all pressures have c-axis normal to the film plane by a four circle X-ray diffractometer, which is an improvement of the films directly sputtered on the substrate. Needle-like grains were formed on the surface of the films under higher sputter pressure with bubble domains, which is originated from high magnetocrystalline anisotropy of the film. Magnetic hysteresis loops recorded by vibrating sample magnetometer agree with them, where in-plane and out-of-plane loops of the samples prepared under high sputtering pressures are quite different, while they are almost identical of the samples under low pressures. The influence of the sputtering pressure was understood by that with the increase of the pressure, resputtering of the films was increased. Nucleation with c-axis normal to the film plane was deteriorated. Thus samples prepared under high pressure have more needle-like crystallites which have c-axis parallel to the film plane.  相似文献   

12.
An in-line hydraulic noise suppressor with a lossy, compressible liner made of foamed polyurethane liner is introduced which is intended to provide an alternative to current in-line silencing devices using compressed nitrogen gas volumes. The liner is engineered to be compressible at elevated pressures, such that it can provide effective noise abatement for practical hydraulic systems. In support of such work, a multimodal model is developed to characterize the device and the liner material. Because the hydraulic system is pressurized after insertion of the liner, the model must address liner compression and the corresponding small gaps introduced in the expansion volume; additionally, both compression and shear wave propagation must be considered in the liner. Several mode matching solutions are investigated, and a pseudoinverse mode matching method is found to provide good convergence characteristics. The multimodal model is validated against a finite element model, and also used in an optimization algorithm to estimate the material properties of a prototype liner using experimental transmission loss data. Experimental results show broadband transmission loss performance at 2.8 MPa system pressure; transmission loss decreases with increasing system pressure, and data at 4.1 MPa system pressure produces about 4 dB less transmission loss than a similarly sized commercial device. The multimodal model with estimated material properties at 2.8 MPa achieves a root mean squared error of 1.7 dB or less for two different length devices over a frequency range of 50–2000 Hz.  相似文献   

13.
Wurtzite zinc oxides films (ZnO) were deposited on silicon (0 0 1) and corning glass substrates using the pulsed laser deposition technique. The laser fluence, target-substrate distance, substrate temperature of 300 °C were fixed while varying oxygen pressures from 2 to 500 Pa were used. It is observed that the structural properties of ZnO films depend strongly on the oxygen pressure and the substrate nature. The film crystallinity improves with decreasing oxygen pressure. At high oxygen pressure, the films are randomly oriented, whereas, at low oxygen pressures they are well oriented along [0 0 1] axis for Si substrates and along [1 0 3] axis for glass substrates. A honeycomb structure is obtained at low oxygen pressures, whereas microcrystalline structures were obtained at high oxygen pressures. The effect of oxygen pressure on film transparency, band gap Eg and Urbach energies was investigated.  相似文献   

14.
The effective wave velocity, attenuation, and nonlinear properties of slightly compressible porous media permeated with air-filled bubbles are studied numerically by employing the nonlinear Hooke’s law for different surrounding pressures. Numerical simulations show that the acoustic properties of porous media are greatly affected by the surrounding pressure if the shear modulus of the elastic medium is very small due to the fact that the acoustic wave propagation in porous media are strongly influenced by the nonlinear oscillation of bubbles; moreover, the oscillation of a bubble depends on the equilibrium bubble radius, which is affected by the surrounding pressures. Published in Russian in Akusticheskiĭ Zhurnal, 2006, Vol. 52, No. 4, pp. 490–496. The text was submitted by the authors in English.  相似文献   

15.
Recent reports of the melting curve of sodium at high pressure have shown that it has a very steep descent after a maximum of around 1000 K at 31 GPa. This maximum does not occur due to a solid-solid phase transition. According to the Lindemann criterion, this behaviour should be apparent in the evolution of the Debye temperature with pressure. In this work, we have performed an “ab initio” analysis of the behaviour of both the Debye temperature and the elastic constants up to 102 GPa, and find a clear trend at high pressure that should cause a noticeable effect on the melting curve.  相似文献   

16.
静高压加载下LY12铝的超声测量与等温状态方程   总被引:2,自引:0,他引:2       下载免费PDF全文
 利用“脉冲回波重合法”测量了多晶LY12铝在流体静压加载下的纵波与横波声速随压力的变化。并根据较低压力(<0.5 GPa)下的超声测量数据所确定的零压弹性模量及其对压力的偏导数,导出了LY12铝的Murnaghan、Birch-Murnaghan、Vinet三种不同形式的等温状态方程,发现由超声测量数据导出的Vinet 状态方程能很好地描述面心立方(fcc)结构的铝与铝合金在较高压力(约200 GPa)下的压缩特性。此外,由超声数据计算了LY12铝在室温常压条件下的Debye温度为430.97 K、热力学Grüneisen系数为2.025、平均声模Grüneisen系数为2 379。  相似文献   

17.
A theoretical model was suggested for qualitative evaluation of a sound pressure field in fruit tissue, as affected by ultrasonic probe dimensions and fruit properties. The classic directivity pattern of an ideal fluid model, expressed by Bessel function of the first kind, was extended to include energy dissipation of a real material. The directional characteristics of wave propagation, as influenced by transmitter frequency and diameter, and by fruit properties, were discussed. The model indicates how to select the parameters of the ultrasonic transducer (transducer diameter, frequency and excitation power) to control the magnitude and directivity of the ultrasonic waves in the fruit tissue. The suggested theoretical model represented fairly well the experimental sound wave distribution over the half-cut surface of potato and avocado (R2 > 0.862 and 0.977, respectively); the same theoretical model could not represent the sound wave distribution over a half-cut melon. Results of the study were applied in a new probe design for ultrasonic testing of whole fruit.  相似文献   

18.
Polycrystalline Fe100−xGax (19?x?23) films were grown on Si(1 0 0) substrates at different partial pressures of sputtering gas ranging from 3 to 7 μbar. Microstructural, magnetic and magnetostrictive properties were studied using X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and magneto-optic Kerr effect (MOKE) magnetometry respectively. X-ray diffraction showed that all films have the body-centered cubic (bcc) Fe-Ga phase with the 〈1 1 0〉 direction out of the film plane. Magnetic characterization of the films showed that the films prepared at 3 μbar had weak uniaxial anisotropy whereas films grown at Ar pressures in the range 4-7 μbar were magnetically isotropic. The effective saturation magnetostriction constants (λeff) of the films were measured using the Villari effect. It was found that effective saturation magnetostriction constants were almost constant over the Ga composition range achieved by varying the sputtering pressure. The measured effective magnetostriction constants fit closely to the calculated saturation magnetostriction constants of 〈1 1 0〉 textured polycrystalline films with the 〈1 1 0〉 directions slightly canted with respect to the normal to the sample surface. It was found that a high pressure of the sputtering gas effected the magnetic softness of the films. The saturation field increased and remanence ratio decreased with increase in pressure.  相似文献   

19.
We have measured the equation of state of the intermetallic compound AuIn2 up to 20 GPa and Cd0.8Hg0.2 up to 50 GPa using methanol-ethanol-water solution or argon as pressure media. In the experiments performed with argon as pressure medium, we minimized non-hydrostatic conditions by thermally annealing the sample. We present data revealing compressibility anomalies in AuIn2 at 2.7 GPa and in Cd0.8Hg0.2 near 8, 18 and 34 GPa with methanol-ethanol-water and argon. At pressures above 5 GPa the P-V data for AuIn2 and Cd0.8Hg0.2 from experiments preformed with argon as a pressure medium start deviating from those using methanol-ethanol-water, and the equation of state based on experiments in argon is stiffer compared with that in methanol-ethanol-water. This behavior is consistent with the relative merits of the two pressure transmitting media as documented in the literature. We also provide a brief summary of the results of electronic structure calculations that associate these anomalies with electronic topological transitions.  相似文献   

20.
GaN films were deposited on Si (111) substrates by middle-frequency magnetron sputtering. X-ray diffraction revealed preferential GaN (0 0 0 2) orientation normal to the substrate surface for all the films deposited. The diffraction intensity and N contents were found to depend strongly on the total gas pressure. Good quality films were only obtained at pressures in the range of 0.4-1.0 Pa. Little diffraction of GaN (0 0 0 2) could be observed either at total pressures below 0.4 Pa or above 1.0 Pa. The GaN films produced under the optimized conditions have an N:Ga ratio of 1:1 as determined by energy-dispersive X-ray spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号