首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A rapid and simple single-drop microextraction method (SDME) has been used to preconcentrate eighteen organochlorine pesticides (OCPs) from water samples with a complex matrix. Exposing two microlitre toluene drop to an aqueous sample contaminated with OCPs proved an excellent preconcentration method prior to analysis by gas chromatography-mass spectrometry (GC-MS). A Plackett-Burman design was used for screening and a central composite design for optimizing the significant variables in order to evaluate several possibly influential and/or interacting factors. The studied variables were drop volume, aqueous sample volume, agitation speed, ionic strength and extraction time. The optimum experimental conditions of the proposed SDME method were: 2 μL toluene microdrop exposed for 37 min to 10 mL of the aqueous sample containing 0% w/v NaCl and stirred at 380 rpm.The calculated calibration curves gave high-level linearity for all target analytes with correlation coefficients ranging between 0.9991 and 0.9999. The repeatability of the proposed method, expressed as relative standard deviation, varied between 5.9 and 9.9% (n = 8). The detection limits were in the range of 0.022-0.101 μg L−1 using GC-MS with selective ion monitoring. The LOD values obtained are able to detect these OCPs in aqueous matrices as required by EPA Method 625. Analysis of spiked effluent wastewater samples revealed that the matrix had no effect on extraction for eleven of the analytes but exerted notable effect for the other analytes.  相似文献   

2.
The hyphenated technique namely microwave-assisted headspace solid-phase microextraction (MA-HS-SPME) was developed and studied for the simultaneous extraction/enrichment of polychlorinated biphenyls (PCBs) in aqueous samples prior to the quantification by gas chromatography (GC). The PCBs in aqueous media are extracted onto a solid-phase micro fibre via the headspace with the aid of microwave irradiation. The optimum conditions for obtaining extraction efficiency, such as the extraction time, addition of salts, addition of methanol, ratio of sample to headspace volume, and the desorption parameters were investigated. Experimental results indicated that the proposed MA-HS-SPME method attained the best extraction efficiency under the optimized conditions, i.e., irradiation of extraction solution (20 ml aqueous sample in 40 ml headspace vial with no additions of salt and methanol) under 30 W microwave power for 15 cycles (1 min power on and 3 min power off of each cycle). Desorption at 270 degrees C for 3 min provided the best detection results. The detection limit obtained were between 0.27 and 1.34 ng/l. The correlation coefficient for the linear dynamic range from 1 to 80 ng/l exceeded 0.99 for 18 PCBs.  相似文献   

3.
Single-drop microextraction (SDME), an emerging miniaturised extraction technique, was for the first time combined with multiple headspace extraction (MHE) to enable the quantitative determination of volatiles in solid matrixes by SDME technique. The concept of multiple headspace single-drop microextraction (MHS-SDME) was then applied for quantitative determination of styrene in polystyrene (PS) samples. Good linearity for the multiple headspace extraction was obtained when the migration of styrene was facilitated by grinding the samples and incubating them for 1 h at 150 degrees C prior the first extraction. Two microlitres of butyl acetate was used as the single-drop microextraction solvent and the extraction time was 5 min per cycle. The relative standard deviation (RSD) for single-drop microextraction of styrene standard at n=6 was 7.6%. Linearity was shown for styrene concentrations between 0.005 and 0.75 microg/ml (R2=0.999). This corresponds to total amount of styrene between 0.1 and 15 microg. The limit of quantitation for styrene standard at S/N 10 was 0.005 microg/ml. The developed method was validated against and showed good agreement with an earlier reported dissolution-precipitation method.  相似文献   

4.
The pretreatment technique of microwave-assisted headspace solid-phase microextraction (MA-HS-SPME) has been developed and studied for the extraction of semi-volatile organic compounds (SVOCs) in aqueous samples prior to chromatographic analysis. The optimum conditions for obtaining extraction efficiency, such as the extraction time, extraction temperature, addition of salts, and the ratio of sample to headspace volume parameters were investigated. Experimental results indicated that the proposed MA-HS-SPME technique attained the best extraction efficiency under the optimized conditions, i.e., irradiation of extraction solution (20mL aqueous sample in 40mL headspace vial with no addition of salt) under 30W microwave power for 30min at 70 degrees C. The detection was linear at 1-250ng/L with correlation coefficient exceeding 0.997. The detection limits obtained were between 0.2-10.7ng/L, repeatability range from 2 to 15%. Real water samples collected from known sites in southern Taiwan were analyzed using the optimized conditions.  相似文献   

5.
A new technique, headspace single-drop microextraction (HS-SDME) with in-drop derivatization, was developed. Its feasibility was demonstrated by analysis of the model compounds, aldehydes in water. A hanging microliter drop of solvent containing the derivatization agent of O-2,3,4,5,6-(pentaflurobenzyl)hydroxylamine hydrochloride (PFBHA) was shown to be an excellent extraction, concentration, and derivatization medium for headspace analysis of aldehydes by GC-MS. Using the microdrop solvent with PFBHA, acetaldehyde, propanal, butanal, hexanal, and heptanal in water were headspace extracted and simultaneously derivatized. The formed oximes in the microdrop were analyzed by GC-MS. HS-SDME and in-drop derivatization parameters (extraction solvent, extraction temperature, extraction time, stirring rate microdrop volume, and the headspace volume) and the method validations (linearity, precision, detection limit, and recovery) were studied. Compared to liquid-liquid extraction and solid-phase microextraction, HS-SDME with in-drop derivatization is a simple, rapid, convenient, and inexpensive sample technique.  相似文献   

6.
This paper compares solid-phase microextraction (SPME) with a recently developed extraction method called single-drop microextraction (SDME) for the analysis of nitroaromatic explosives in water samples. The two techniques are examined in terms of procedure, chromatographic analysis and method performance. All practical considerations for both techniques are also reviewed. SPME requires dedicated apparatus and is relatively expensive, as the fiber's lifetime is limited. However, it has the advantages over SDME that it can be easily used for headspace analysis and has lower detection limits for all the target analytes. SDME requires more elaborate manual operations, thus affecting linearity and precision.  相似文献   

7.
We report on an efficient one-step sample preconcentration technique by coupling microwave heating and cloud vapor zone (CVZ)-based headspace controlled-temperature single drop microextraction (HS-CT-SDME), and its application to headspace extraction of chlorophenols in aqueous solutions. Microwave irradiation is utilized to accelerate evaporation of analytes into the headspace sampling zone for the direct extraction of aqueous chlorophenols. A microdrop of extractant is suspended at the bottom of a bell-mouthed micropipette tip connected to a microsyringe needle. An external cooling system was adopted to control the formation of the CVZ around the SDME tip in the headspace sampling area. In the CVZ procedure, the warm headspace vapor is quickly cooled near the SDME tip, thus forming a dense cloud of analyte-water vapor; thereby enhancing the partition of the analytes into the SDME solvent. The chlorophenols are then determined by LC-UV detection. Under the optimized experimental conditions, the analytical signal is linearly related to the concentration of the chlorophenols range of 2.5–250?ng?mL?1. The detection limits vary from 0.3 to 0.7?ng?mL?1, and the precision (expressed as the relative standard deviation) from 3.7 to 13.3?%. The method was validated with real water samples, and the spiked recovery ranged between 92 and 103.1?% for river water, and between 85.1?% and 98.6?% for lake water. Compared to other methods, microwave assisted HS-CT-SDME is simple, rapid, sensitive, inexpensive and eco-friendly, and requires less sample and organic extractant.
Online Graphical Abstract
Assembly of microwave assisted headspace controlled-temperature single drop microextraction set-up. We developed a one-step microwave assisted headspace controlled-temperature single drop microextraction technique for the analysis of chlorophenols from waters using HPLC-UV. The presented approach is a rapid, simple, solvent miniaturized, inexpensive and eco-friendly method which represent an alternative to traditional sample preparation methods to determine chlorophenols from environmental water samples.  相似文献   

8.
Water contamination due to the wide variety of pesticides used in agriculture practices is a global environmental pollution problem. The 98/83 European Directive requires the measurement of pesticides residues at a target concentration of 1.0 microg/l in surface water and 0.1 microg/l in drinking water. In order to reach the level of detection required, efficient extraction techniques are necessary. The application of a new extraction technique: single-drop microextraction (SDME), followed by gas chromatography with electron-capture detection, was assessed for determining alpha-endosulfan and beta-endosulfan in water samples. Experimental parameters which control the performance of SDME, such as selection of microextraction solvent and internal standard, optimization of organic drop volume, effects of sample stirring, temperature and salt addition, and sorption time profiles were studied. Once SDME was optimized, analytical parameters such as linearity, precision, detection and quantitation limits, plus matrix effects were evaluated. The SDME method was compared with solid-phase microextraction and solid-phase extraction with the aim of selecting the most appropriate method for a certain application.  相似文献   

9.
Tsao YC  Wang YC  Wu SF  Ding WH 《Talanta》2011,84(2):406-410
The rapid and solvent-free determination of organophosphate esters (OPEs) in aqueous samples via one-step microwave-assisted headspace solid-phase microextraction (MA-HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) analysis is described. Tri-n-butyl phosphate (TnBP) and tris-(2-ethylhexyl) phosphate (TEHP) were selected as model compounds for the method of development and validation. The effects of various extraction parameters for the quantitative extraction of these analytes by MA-HS-SPME were systematically investigated and optimized. The analytes, in a 20 mL water sample (in a 40 mL sample bottle containing 2 g of NaCl, pH 3.0), were efficiently extracted by a polydimethylsiloxane-divinylbenzene (PDMS-DVB) fiber placed in the headspace when the system was microwave irradiated at 140 W for 5 min. The limits of quantification (LOQs) for TnBP and TEHP were 0.5 and 4 ng/L, respectively. Using the standard addition method, MA-HS-SPME coupled with GC-MS was utilized to determine selected OPEs in surface water and wastewater treatment plants (WWTP) influent/effluent samples. Preliminary results show that TnBP was commonly detected OPEs in these aqueous samples, the correlation coefficients (r2) of the standard addition curves were greater than 0.9822, indicating that the developed method appears to be a good alternative technique for analyzing OPEs in aqueous samples.  相似文献   

10.
A sensitive and solvent-free procedure for the determination of non-steroidal acidic anti-inflammatory drugs in water samples was optimized using solid-phase microextraction (SPME) followed by on-fiber silylation of the acidic compounds and gas chromatography-mass spectrometry (GC-MS) determination. Microextraction was carried out directly over the filtered water samples using a polyacrylate fiber. Derivatization was performed placing the SPME fiber, loaded with the extracted analytes, in the headspace of a vial containing 50 microl of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA). Derivatives were desorbed for 3 min in the GC injector. Influence of several parameters in the efficiency of microextraction (volume of sample, time, pH, type of fiber coating, etc.) and derivatization steps (time, temperature and volume of MTBSTFA) was systematically investigated. In the optimal conditions an excellent linearity over three orders of magnitude and quantification limits at the ng/l level (from 12 to 40 ng/l) were achieved. The proposed method was applied to the determination of acidic compounds in sewage water and results compared to those obtained using solid-phase extraction (SPE) followed by the derivatization of the compounds in the organic extract of the solid-phase extraction cartridge.  相似文献   

11.
A fast and simple method, using static single-drop microextraction (SDME), has been developed to facilitate the identification and quantification of seven dialkyl phthalate esters in the three aqueous food simulants. The simulants were: A, distilled water; B, 3% (w/v) acetic acid/water; and C, 15% (v/v) ethanol/water. The extraction is performed by simply suspending a drop of organic solvent in the aqueous sample using a conventional gas chromatography (GC) microsyringe. Following extraction, the organic phase is withdrawn into the syringe and analyzed by gas chromatography and flame ionization detection (FID). The optimized method yields a linear calibration curve over three orders of magnitude for all the simulants, and method detection limits (MDLs) allowing detection of all the studied compounds at concentrations below migration limits established by the European Union. The accuracy of the SDME method was tested and compared to that of solid-phase microextraction (SPME) by recovery experiments using spiked samples, with results ranging from 85 to 115% in most cases.  相似文献   

12.
In this work, for the first time, gas chromatography-mass spectrometry (GC-MS) following headspace single-drop microextraction (HS-SDME) and simultaneous derivatization was developed for fast determination of short-chain aliphatic amines (SCAAs) in water samples. In the proposed method, SCAAs in water samples were headspace extracted and concentrated by suspending a microdrop of solvent, and SCAAs extracted in the microdrop of solvent were simultaneously and rapidly reacted with pentafluorobenzaldehyde (PFBAY). The formed SCAA derivatives were analyzed by GC-MS. The HS-SDME parameters of solvent selection, solvent volume, sample temperature, extraction time and stirring rate were studied, and the method linearity, precision and detection limits, were also studied. The results show that the proposed method provided good linearity (R(2)>0.99, 5.0-500 ng/ml), low detection limit (0.6-1.1 ng/ml), and good precision (RSD value less than 10%). The proposed method was further tested by its application to quantitative analysis of SCAAs in four wastewater samples. The experiment results have demonstrated that GC-MS following HS-SDME and simultaneous derivatization is a simple, rapid and low-cost method for the determination of SCAAs in water samples.  相似文献   

13.
A one-step derivatization and extraction technique for the determination of primary amines in river water by liquid-phase microextraction (LPME) is presented. In this method the primary amines are derivatized with pentafluorobenzaldehyde (PFBAY) in aqueous solution and extracted by dynamic hollow fiber-protected-LPME (HF-LPME) simultaneously. The effects of solvent selection, sample agitation, extraction time, extraction temperature and salt concentration on the extraction performance are investigated. High enrichments (172-244-fold) and good repeatabilities (RSD less than 7.2%) were obtained. Linearity in this developed method was ranging from 1 to 500 ng/ml, and the correlation coefficients (R2) were between 0.992 and 0.998. Comparisons of sensitivity and precision between dynamic HF-LPME and single-drop liquid-phase microextraction (SDME) were also made.  相似文献   

14.
A new method based on combination of solid- and liquid-phase microextraction was developed. For the first time, porous flower-like silica microstructures with nanometric layers were created on the surface of the stainless steel wire by a new facile hydrothermal process. The fiber, coated with a suitable organic solvent, was applied for microextraction of some organophosphorus pesticides from aqueous samples followed by gas chromatography-nitrogen phosphorous detection. Method detection limits were between 0.6 and 3 ng L−1. Relative standard deviations for intra- and inter-day precision were 4.4–7.3% and 5.1–7.8%, respectively. Fiber-to-fiber reproducibility for five prepared fibers was 6.3–8.4%. Tap, river and waste water samples were analyzed for evaluation of the method in real sample analysis. Relative recoveries for spiked tap, river and waste water samples were in the range of 94–101%, 89–97% and 82–103%, respectively. In addition, the method was compared with two commercial solid-phase microextraction (SPME) fibers, single drop microextraction (SDME) and liquid-phase microextraction (LPME). The present method showed higher extraction efficiency as compared with SDME, LPME and commercial SPME fibers.  相似文献   

15.
A new method involving headspace single-drop microextraction (SDME) with in-drop derivatization and CE is developed for the preconcentration and determination of free cyanide. An aqueous microdrop (5 microL) containing Ni(II)-NH(3) (as derivatization agent), sodium carbonate and ammonium pyromellitate (as internal standard) was used as the acceptor phase. The extracted cyanide forms a stable Ni(CN)(4) (2-) complex which is then determined by CE. Common experimental parameters (sample and acceptor phase pH, extraction temperature, extraction time and sample ionic strength) affecting the extraction efficiency were investigated. Using headspace SDME, free cyanide can be effectively extracted from the neutral solutions, i.e. without the acidification of the sample which often is prone to errors due to incomplete liberation and artefactual cyanide production. Proposed SDME-CE method provided about 58-fold enrichment in 20 min. The calibration curve was linear for concentrations of CN(-) in the range from 0.25 to 20 micromol/L (R(2) = 0.997). The LOD (S/N = 3) was estimated to be 0.08 micromol/L of CN(-). Such a detection sensitivity is high enough for free cyanide determination in common environmental and physiological samples. Finally, headspace SDME was applied to determine free cyanide in human saliva and urine samples with spiked recoveries in the range of 91.7-105.6%. The main advantage of this method is that sample clean-up, preconcentration and derivatization procedures can be completed in a single step. In addition, the proposed technique does not require any sample pretreatment and thus is much less susceptible to interferences compared to existing methods.  相似文献   

16.
Xiao Q  Hu B  Yu C  Xia L  Jiang Z 《Talanta》2006,69(4):848-855
A single-drop microextraction (SDME) procedure was developed for the analysis of organophosphorus pesticides (OPPs) in water and fruit juice by gas chromatography (GC) with flame photometric detection (GC-FPD). The significant parameters affecting the SDME performance such as selection of microextraction solvent, solvent volume, extraction time, stirring rate, sample pH and temperature, and ionic strength were studied and optimized. Two types of SDME mode, static and cycle-flow SDME, were evaluated. The static SDME procedure provided more sensitive analysis of the target analytes. Therefore, static SDME with tributyl phosphate (TBP) as internal standard was selected for the real sample analysis. The limits of detection (LODs) in water for the six studied compounds were between 0.21 and 0.56 ng/mL with the relative standard deviations ranging from 1.7 to 10.0%. Linear response data was obtained in the concentration range of 0.5-50 ng/mL (except for dichlorvos 1.0-50 ng/mL) with correlation coefficients from 0.9995 to 0.9999. Environmental water sample collected from East Lake and fruit juice samples were successfully analyzed using the proposed method, but none of the analytes in both lake water and fruit juice were detected. The recoveries for the spiked water and juice samples were from 77.7 to 113.6%. Compared with the conventional methods, the proposed method enabled a rapid and simple determination of organophosphorus pesticides in water and fruit juice with minimal solvent consumption and a higher concentration capability.  相似文献   

17.
Microwave-assisted extraction coupled to headspace solid-phase microextraction was studied and applied for one-step in-situ sample preparation prior to analysis of chlorophenols (CPs) in soil samples. The CPs in soil sample were extracted into the aqueous solution and then directly onto the solid-phase microextraction (SPME) fiber in headspace under the aid of microwave irradiation. After being desorbed from SPME fiber in the GC injection port, CPs were analyzed with a GC-electron-capture detection system. Parameters affecting the extraction efficiency such as the extraction solutions, the pH in the slurry, the humic acid content in the soil, the power and the irradiation time of microwave as well as the desorption parameters were investigated. Experimental results indicated that the extraction of a 1.0 g soil sample with a 6-ml aqueous solution (pH 2) and a polyacrylate fiber under the medium-power irradiation (132 W) for 9 min achieved the best extraction efficiency of about 90% recovery and less than 10% RSD. Desorption was optimal at 300 degrees C for 3 min. Detection limits were obtained at around 0.1-2.0 microg/kg levels. The proposed method provided a simple, fast, and organic solvent-free procedure to analyze CPs from soil sample matrix.  相似文献   

18.
Single-drop microextraction (SDME) has been coupled with gas chromatography–mass spectrometry to enable rapid and simple simultaneous analysis of carbamate and organophosphorus pesticides (OPP). The significant conditions affecting SDME performance (microextraction solvent, extraction time, solvent volume, sample pH, stirring speed, and ionic strength) were studied and optimized. Extraction was achieved by suspending a 1.5-μL drop of toluene from the tip of a microsyringe directly immersed in 5-mL aqueous donor solution at pH 5 stirred at 800 rpm. The dynamic linear range and detection limits of the method were evaluated by analysis of water samples spiked with carbamate pesticides and OPP. Under selected ion-storage mode, very low detection limits (0.02–0.50 ng mL?1) and good linearity (0.5–200 ng mL?1) were achieved. When SDME was applied to analysis of pesticides in natural water samples good recoveries (89.4–102.1%) were obtained. Inter-day and intra-day RSD of most results were below 5.4 and 6.1%, respectively. The method proved to be a rapid and simple tool for extraction and analysis of these pesticides in water samples.  相似文献   

19.
A simple, economical and very effective method is demonstrated for simultaneous determination of 2,4-dichlorophenol, 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol and pentachlorophenol, in aqueous samples, by using purge-assisted headspace solid-phase microextraction (PA/HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS). In the new method, purging the sample enhances the removal of the trace chlorophenols without derivatization from the matrices to the headspace. Extraction parameters including extraction temperature, purge gas flow rate and extraction time were systematically investigated. Under optimal conditions, the relative standard deviations (RSDs) were 4-11% at 50 pg/mL and 5-14% at 5 pg/mL, respectively. The recoveries were in the range of 83-114%. Detection limits were determined at the fg level. These results indicate that PA/HS-SPME provides a significant contribution to highly efficient extraction of semi-volatile CPs, especially for pentachlorophenol, which has the smallest Henry's constant and large octanol-water partitioning coefficient. In addition, the proposed method was successfully applied to the analysis of chlorophenols in landfill leachate. New perspectives are opened for headspace extraction of relatively low vapor pressure compounds in complex matrices.  相似文献   

20.
This study describes a new approach to cold-fiber solid-phase microextraction (CF-SPME) based on a combination of different extraction modes in the same extraction procedure. Also, the high quantity of water required to facilitate both the desorption of analytes from the matrix and their transport to the fiber coating is reported. The extraction mode was changed from the direct to the headspace mode in a single extraction while manipulating the extraction times and coating temperature to improve the extraction of compounds with different volatilities. Compounds with low volatility were better extracted in the direct mode, while the headspace mode was more appropriate for volatile compounds. Polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PEs) in sand or soil samples were used as model compounds and matrices in this study. The optimized conditions were: sample pH in the range of 4-7, addition of 12 mL of 194 g L(-1) aqueous NaCl solution in a 15 mL vial, and 80 min total extraction time with a sample temperature of 90°C (50 min in direct mode with coating at 90°C followed by 30 min in headspace mode with coating at 30°C). The proposed procedure was compared with conventional CF-SPME (with and without addition of water) and was found to be more effective for all the analytes, since it is capable of extracting both heavier and lighter compounds from soil samples in a single extraction procedure. The use of an excess of water and a combination of extraction modes in the same CF-SPME procedure are the main factors responsible for this enhancement. The proposed method was applied to the extraction of PAHs and PEs in spiked soil samples and excellent results were obtained for most of the compounds evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号