首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 889 毫秒
1.
Oxidation of 1 - phenylcarbamoylidazolidine - 2 - thione gives 2,3,5,6 - tetrahydro - 2 - phenylimidazo [1,2-d]- (1,2,4) - thiadiazole - 3 - one which undergoes addition reactions with heterocumulenes leading to various heteropentalenes. Oxidation of 1 - phenylthiocarbamoylimidazlidine- 2 - thione yields 1- (benzothiazol - 2- yl) - imidazolidine - 2 - thione, also obtained by acid catalysed decomposition of 3,4 - ethano - 2,3,4,5 - tetrahydro - 2, 5 - bisphenylimino - 1,6,6aSIV - trithia - 3,4 - diazapentalene. A similar acid catalysed decomposition to a benzothiazole occurs with 2,3,4,5 - tetrahydro - 1,6 - diphenyl - 3,4 - propano - 6aSIV - thia - 1,3,4,6 - tetraazapentalene -2, 5- dithione.  相似文献   

2.
An exceptional red shift of emission maxima upon fluorine substitution   总被引:8,自引:0,他引:8  
The effect of perfluorination on photophysical properties was investigated through synthesis and photophysical characterization of two isostructural donor-acceptor-donor dye molecules. The synthesis of two versatile fluorinated benzene compounds, 1,4-difluoro-2,5-diperfluorooctylbenzene (1) and 1,4-dibromo-2,5-difluoro-3,6-diperfluorooctylbenzene (2), is presented. The X-ray structure of 2 has been determined and shows that the perfluorinated octyl chains segregate from the benzene rings in the solid state, giving rise to a layered structure. The further synthesis through Suzuki coupling reactions using 4-formylbenzeneboronic acid with (2) and 1,4-dibromo-2,5-dioctylbenzene (3) gave, respectively, 1,4' '-diformyl-2',5'-difluoro-3',6'-diperfluorooctyl-p-terphenylene (4) and 1,4' '-diformyl-2',5'-dioctyl-p-terphenylene (5). The condensation of the dialdehydes 4 and 5 with 9,10-phenanthrenequinone and ammoniumbicarbonate in glacial acetic acid gave the dye molecules 1,4' '-bis(1H-phenanthro[9,10-d]imidazol-2-yl)-2',5'-difluoro-3',6'-diperfluorooctyl-p-terphenylene (6) and 1,4' '-bis(1H-phenanthro[9,10-d]imidazol-2-yl)-2',5'-dioctyl-p-terphenylene (7), respectively. The UV-vis spectra of the two molecules are nearly identical, whereas the fluorescence spectra are very different. Compound 7 shows blue fluorescence with little solvent dependence (lambda(emission) = 410 nm in THF, CH2Cl2, and hexane), whereas compound 6 shows a highly solvent-dependent emission wavelength (lambda(emission) = 583 nm in THF, lambda(emission) = 560 nm in CH2Cl2, and lambda(emission) = 450 nm in hexane). The fluorescence red shift of compound 6 in a series of solvents with different polarity is discussed using the Lippert-Mataga equation. Fluorescence lifetime and quantum yields were also determined. Ultraviolet photoelectron spectroscopy (UPS) was performed on thin films of compound 6 and 7 on a gold substrate. The observed ionization potential was 6.15 eV for 6 and 5.85 eV for 7" [correction].  相似文献   

3.
The Hel photoelectron (PE ) spectra of desmethyldiazepam, diazepam, oxazepam, temazepam, 3-(S)-methyldesmethyldiazepam, 3-(S)-methyldiazepam, 5-methyl-2H-1,4-benzodiazepin-2-one, and benzophenonmethylimine have been measured and analyzed. Their low-energy regions (up to 12.0 eV) have been completely assigned by the composite molecule method using the PE spectra of diphenylmethane, benzophenonmethylimine, acetamide, chlorobenzene, and acetophenonmethylimine to compare the electronic structure of equivalent parts.  相似文献   

4.
The σ-orbital manifold of cubane 1 , as suggested by its PE spectrum, is divided into two sets separated by a 3 eV gap extending from ~ -10.5 eV to ~ -13.5 eV. Halogen substituents with np AO basis energies falling into this gap (e.g. Cl or Br) will, therefore, hyperconjugate appreciably with both sets. Interaction with the lower-lying set will lead to the usual destabilization (‘normal’ hyperconjugation), whereas interaction with the set above will necessarily lead to a ‘stabilization’ (‘inverted’ hyperconjugation). As a result the lone-pair ionization energies of Cl or Br substituted cubanes (derived from PE spectra) are much larger than naively expected for an alkyl halide containing as much as 8 C-atoms. In particular no significant shift of the e lone-pair bands in the PE spectra of 1,4-dichloro- and 1,4-dibromocubane can be detected with respect to the first ionization energies of the free atoms Cl and Br, or of HCl and HBr.  相似文献   

5.
This paper reports the two-dimensional nmr spectral assignment and the X-ray structural determination of 2,14-dimethyl-8β-hydroxy-7,10-dioxo-5β,6β-(propano)-6α,8α-(ethanoimino)-trans-perhydroisoquinoline V which was obtained from 7,10-dimethyl-2β-hydroxy-14-oxo-2,3-(methanoiminoethano)-3β,4β-(propano)-3,4,5,6,7,8-hexahydro-2H-pyrano[2,3-c]pyridine IV by isomerization with hydrochloric acid. Both the compounds IV and V afforded the same dimethiodide IV -2MeI, while the configurational isomer 2,14-dimethyl-8aβ-hydroxy-7,10-dioxo-5α,6β-(propano)-6α,8α-(ethanoimino)-trans-perhydroisoquinoline III gave monomethiodide III -Mel. The structures of these methiodides were also confirmed by X-ray analysis.  相似文献   

6.
The molecular structures and electron affinities of the C6HCl5 and C6Cl6 molecules have been determined using seven pure Density Functional Theory (DFT) or hybrid Hartree–Fock/DFT methods. The EAs of ten kinds of monochlorobenzene, dichlorobenzene, trichlorobenzene and tetrachlorobenzene are also predicted. The basis set used in this work is of double-ζ plus polarization quality with additional diffuse s- and p-type functions, denoted DZP++. These methods have been carefully calibrated (Chem. Rev. 2002, 102, 231). The geometries are fully optimized with each DFT method independently. The equilibrium configuration of hexachlorobenzene is found to be planar with D6h symmetry. The pentachlorobenzene is planar with C symmetry. Three different types of the neutral-anion energy separations reported in this work are the adiabatic Electron Affinity (EAad), the vertical Electron Affinity (EAvert), and the Vertical Detachment Energy (VDE). The most reliable adiabatic electron affinities of the chlorinated benzenes obtained at the BHLYP level of theory are −0.18 eV (C6H5Cl), 0.07 eV (1,2-C6H4Cl2), 0.07 eV (1,3-C6H4Cl2), 0.04 eV (1,4-C6H4Cl2), 0.29 eV (1,2,3-C6H3Cl3), 0.31 eV (1,2, 4-C6H3Cl3), 0.31 eV (1,3,5-C6H3Cl3), 0.51 eV (1,2,3,4-C6H2Cl4), 0.48 eV (1,2,4,5-C6H2Cl4), 0.50 eV (1,2,3,5-C6H2Cl4), 0.74 eV (C6HCl5) and 0.79 eV (C6Cl6), respectively.  相似文献   

7.
The reaction of Hg(OAc)(2) with 1,4-benzenedithiol in ethylenediamine at 80 °C yields [Hg(SC(6)H(4)S)(en)](n), while the reaction of Pb(OAc)(2) with 1,4-benzenedithiol in diethylenetriamine at 130 °C yields [Pb(SC(6)H(4)S)(dien)](n). Both products are crystalline materials, and structure determination by synchrotron X-ray powder diffraction revealed that both are essentially one-dimensional metal-organic polymers with -M-SC(6)H(4)S- repeat units. Diffuse reflectance UV-visible spectroscopy indicates band gaps of 2.89 eV for [Hg(SC(6)H(4)S)(en)](n) and 2.54 eV for [Pb(SC(6)H(4)S)(dien)](n), while density functional theory (DFT) band structure calculations yielded band gaps of 2.24 and 2.10 eV, respectively. The two compounds are both infinite polymers of metal atoms linked by 1,4-benzenedithiolate, the prototypical molecule for single-molecule conductivity studies, yet neither compound has significant electrical conductivity as a pressed pellet. In the case of [Pb(SC(6)H(4)S)(dien)](n) calculations indicate fairly flat bands and therefore low carrier mobilities, while the conduction band of [Hg(SC(6)H(4)S)(en)](n) does have moderate dispersion and a calculated electron effective mass of 0.29·m(e). Hybridization of the empty Hg 6s orbital with SC(6)H(4)S orbitals in the conduction band leads to the band dispersion, and suggests that similar hybrid materials with smaller band gaps will be good semiconductors.  相似文献   

8.
Photoelectron (PE) spectra have been obtained for the M(BH(4))(4) (M = Zr, Hf and U) molecules in the 20-60 eV photon-energy range, and for M = U, also in the 90-120 eV region. Derived branching ratios (BR) and relative partial-photoionization cross sections (RPPICS) of the valence bands are used to confirm band assignment and demonstrate d-orbital covalency for all three compounds and f-orbital covalency for U(BH(4))(4). Core ionizations are identified and used to confirm resonance features in the RPPICS. The absorption spectrum of Zr(BH(4))(4) between 20 and 60 eV shows 4p absorption at 35.5 eV, coincident with the 4p-4d resonance in the RPPICS of the 1e and 2t(2) ionization bands of Zr(BH(4))(4). Less intense absorption bands at 32.5 and 33.8 eV correspond with shape resonance features in the 1a(1) and 1t(2) PE bands. The RPPICS of the f band of U(BH(4))(4) shows two strong resonant features between 95 and 120 eV. Direct photoemission of the 5f electrons from U(BH(4))(4) results only in the observation of the (2)F(5/2) ion state of [U(BH(4))(4)](+), but in the 5d-5f resonant region, a weak band corresponding to the (2)F(7/2) ion state is also observed. The splitting of the 1t(2) band of U(BH(4))(4) is attributed to a small contribution of U 6p semi-core electrons to this MO. Density functional calculations give a good estimate of the pattern of ionization energies, although the calculated absolute values are lower than the experimental values, the first IE by 0.5 eV for Zr(BH(4))(4) and Hf(BH(4))(4) and 1.0 eV for U(BH(4))(4). The MO compositions are in very good agreement with the deductions made from the BR and RPPICS analyses.  相似文献   

9.
Mechanisms of the electron-induced degradation of three polymers utilized in aerospace applications (polyethylene (PE), polytetrafluoroethylene (PTFE), and polystyrene (PS)) were examined over a temperature range of 10 K to 300 K at ultra high vacuum conditions (~10(-11) Torr). These processes simulate the interaction of secondary electrons generated in the track of galactic cosmic ray particles in the near-Earth space environment with polymer material. The chemical alterations at the macromolecular level were monitored on-line and in situ by Fourier-transform infrared spectroscopy and mass spectrometry. These data yielded important information on the temperature dependent kinetics on the formation of, for instance, trans-vinylene groups (-CH=CH-) in PE, benzene (C(6)H(6)) production in PS, fluorinated trans-vinylene (-CF=CF-) and terminal vinyl (-CF=CF(2)) groups in PTFE together with molecular hydrogen release in PE and PS. Additional data on the radiation-induced development of unsaturated, conjugated bonds were collected via UV-vis spectroscopy. Temperature dependent G-values for trans-vinylene formation (G(-CH=CH-) ≈ 25-2.5 × 10(-4) units (100 eV)(-1) from 10-300 K) and molecular hydrogen evolution (G(H(2)) ≈ 8-80 × 10(-5) molecules (100 eV)(-1) from 10-300 K) for irradiated PE were calculated to quantify the degree of polymer degradation following electron irradiation. These values are typically two to three orders of magnitude less than G-values previously published for the irradiation of polymers with energetic particles of higher mass.  相似文献   

10.
[structure: see text] Anti-[2.2](1,4)biphenylenophane (4) was synthesized from de Meijere's tetrabromo[2.2]paracyclophane (5) through a four-step reaction sequence. Although an average separation of 3.09 A between the inner ring of the biphenylene units is normal for [2.2]paracyclophanes, a bond distance of 1.54 Afor the ethano C-C bridge at room temperature is shorter than usual. In addition, trimethylsilyl-substituted anti-[2.2](1,4)biphenylenophane 8 sublimes at 220 degrees C under a pressure lower than 1 x10(-5) Torr without decomposition or thermal isomerization. The high thermal stability of 8 suggested that the ethano bridges of the biphenylenophanes are less strained than those of [2.2]paracyclophane. Bathochromic shifts are observed in their UV-vis absorption spectra. The phane state interactions of 4 and 8 were evidenced by the weak structureless fluorescent emission maximized at 537 and 550 nm in CH(2)Cl(2) along with longer relaxation lifetimes of 229 and 292 ps, respectively.  相似文献   

11.
The Hel photoelectron (PE) spectra of 5-phenyl-7-chloro-2H-1,4-benzodiazepin-2-one ( 1 ), its 1-methyl derivative ( 2 ), 3-hydroxy derivative ( 3 ), 1-methyl-3-hydroxy derivative ( 4 ), 3-(S)-methyl derivative ( 5 ), and 1-methyl-3-(S)-methyl derivative ( 6 ) have been recorded. The electronic structure of these compounds is discussed on the basis of the observed ionization energies, and of the semiempirical CNDO/2 calculations on model compounds 1a-6a , which have a hydrogen instead of the phenyl group in the 5-position. As a result the character of the seven highest occupied orbitals in 1–6 have been assigned.  相似文献   

12.
The structures and energies of As(n) (n = 2-8) neutrals, anions, and cations have been systematically investigated by means of the G3 schemes. The electron affinities, ionization potentials, binding energies, and several dissociation energies have been calculated and compared with limited experimental values. The results revealed that the potential surfaces of neutral As(n) clusters are very shallow, and two types of structural patterns compete with each other for the ground-state structure of As(n) with n ≥ 6. One type is derived from the benzvalene form of As(6), and another is derived from the trigonal prism of As(6). The previous photoelectron spectrum (taken from J. Chem. Phys. 1998 , 109 , 10727 ) for As(3) has been reassigned in light of the G3 results. The experimental electron affinities of As(3) were measured to be 1.81 eV, not 1.45 eV. We inferred from the conclusion of G3 and density functional theory that the experimental electron affinities of 1.7 and 3.51 eV for As(5) are unreliable. The reliable electron affinities were predicted to be 0.83 eV for As(2), 1.80 eV for As(3), 0.54 eV for As(4), 3.01 eV for As(5), 2.08 eV for As(6), 2.93 eV for As(7), and 2.02 eV for As(8). The G3 ionization potentials were calculated to be 9.87 eV for As(2), 7.33 eV for As(3), 8.65 eV for As(4), 6.68 eV for As(5), 7.97 eV for As(6), 6.58 eV for As(7), and 7.65 eV for As(8). The binding energies per atom were evaluated to be 1.99 eV for As(2), 2.01 eV for As(3), 2.61 eV for As(4), 2.39 eV for As(5), 2.51 eV for As(6), 2.55 eV for As(7), and 2.67 eV for As(8). These theoretical values of As(2), As(3), and As(4) are in excellent agreement with those of experimental results. Several dissociation energies were carried out to examine relative stabilities. This characterized the even-numbered clusters as more stable than the odd-numbered species.  相似文献   

13.
We present high resolution VUV photoabsorption spectra of 1,4-pentadiene, C(5)H(8), over the wavelength range 115-247 nm (10.8-5.0 eV). These spectra reveal several new features not previously reported in the literature. These measurements are complemented by the first ab initio calculations for the three most abundant conformational isomers of 1,4-pentadiene, C(5)H(8), which we then use in the assignment of valence and Rydberg transitions. Calculations of the two lowest energy ionic states of 1,4-pentadiene are also presented and compared with the experimental data available in the literature. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of 1,4-pentadiene in the upper stratosphere (20-50 km).  相似文献   

14.
We present a multistate complete active space second-order perturbation theory computational study aimed to predict the low-lying electronic excitations of four compounds that can be viewed as two disilane units connected through alkane bridges in a bicyclic cage. The analysis has focused on 1,4-disilyl-1,4-disilabicyclo[2.2.1]heptane (1a), 1,4-bis(trimethylsilyl)-1,4-disilabicyclo[2.2.1]heptane (1b), 1,4-disilyl-1,4-disilabicyclo[2.1.1]hexane (2a), and 1,4-bis(trimethylsilyl)-1,4-disilabicyclo[2.1.1]hexane (2b). The aim has been to find out the nature of the lowest excitations with significant oscillator strengths and to investigate how the cage size affects the excitation energies and the strengths of the transitions. Two different substituents on the terminal silicon atoms (H and CH3) were used in order to investigate the end group effects. The calculations show that the lowest allowed excitations are of the same character as that found in disilanes but now red-shifted. As the cage size is reduced from a 1,4-disilabicyclo[2.2.1]heptane to a 1,4-disilabicyclo[2.1.1]hexane, the Si...Si through-space distance decreases from approximately 2.70 to 2.50 A and the lowest allowed transitions are red-shifted by up to 0.9 eV, indicating increased interaction between the two Si-Si bonds. The first ionization potential, which corresponds to ionization from the Si-Si sigma orbitals, is lower in 1b and 2b than in Si2Me6 by approximately 0.9 and 1.2 eV, respectively. Moreover, 1b and 2b, which have methyl substituents at the terminal Si atoms, have slightly lower excitation energies than the analogous species 1a and 2a.  相似文献   

15.
The anion photoelectron spectra of Al5O4- and Al5O5H2- are presented and interpreted within the context of quantum chemical calculations on these species. Experimentally, the electron affinities of these two molecules are determined to be 3.50(5) eV and 3.10(10) eV for the bare and hydrated cluster, respectively. The spectra show at least three electronic transitions crowded into a 1 eV energy window. Calculations on Al5O4- predict a highly symmetric near-planar structure with a singlet ground state. The neutral structure calculated to be most structurally similar to the ground state structure of the anion is predicted to lie 0.15 eV above the ground state structure of the neutral. The lowest energy neutral isomer does not have significant Franck-Condon overlap with the ground state of the anion. Dissociative addition of water to Al5O4- is energetically favored over physisorption. The ground state structure for the Al5O4- +H(2)O product forms when water adds to the central Al atom in Al5O4- with -H migration to one of the neighboring O atoms. Again, the ground state structures for the anion and neutral are very different, and the PE spectrum represents transitions to a higher-lying neutral structure from the ground state anion structure.  相似文献   

16.
This paper reports our recent efforts to develop novel tricycles based on 4H-benzo[1,4]thiazin-3-one ( 2) and 1,1-dioxo-1,4-dihydro-2H-1lambda(6)-benzo[1,4]thiazin-3-one (3) using 1,5-difluoro-2,4-dinitrobenzene (1). All of these tricycles integrate two privileged structures into one skeleton, including 3,8-dihydro-5-thia-1,3,8-triaza-cyclopenta[b]naphthalene-7-one (4, 10, 12), 5,5-dioxo-3,5,6,8-tetrahydro-5lambda(6)-thia-1,3,8-triaza-cyclopenta[b]naphthalene-7-one (5, 11), 3,8-dihydro-5-thia-1,2,3,8-tetraaza-cyclopenta[b]naphthalene-7-one (6), 5,5-dioxo-3,5,6,8-tetrahydro-5lambda(6)-thia-1,2,3,8-tetraaza-cyclopenta[b]naphthalene-7-one (7), 3,8-dihydro-1H-5-thia-1,3,8-triaza-cyclopenta[b]naphthalene-2,7-dione (8), and 5,5-dioxo-3,5,6,8-tetrahydro-1H-5lambda(6)-thia-1,3,8-triaza-cyclopenta[b]naphthalene-2,7-dione (9). A typical library of scaffold 5 was synthesized in a parallel solution-phase manner and analyzed by HPLC-UV-MS or HPLC-UV-ELSD method.  相似文献   

17.
CpMoMn(CO)5(mu-S2), 1 reacts with 1,4-benzoquinone to yield CpMoMn(CO)5(mu-S2C6H2O2), 2 containing a 1,4-quinonedithiolato ligand formed by replacing two of the hydrogen atoms on one of the C-C double bonds of 1,4-benzoquinone with sulfur atoms from the disulfido ligand in 1. Compound 2 was reduced with hydrogen to yield CpMoMn(CO)5[mu-S2C6H2(OH)2], 3 which contains a 1,4-hydroquinonedithiolato ligand. Compound 3 was reoxidized to 2 with ferrocenium hexafluorophosphate.  相似文献   

18.
Itakura H  Tomioka H 《Organic letters》2000,2(19):2995-2997
The title carbenes where aryl groups are phenyl, 2,4, 6-trimethylphenyl, and octahydro-1,4:5,8-di(ethano)anthryl were generated for the first time by irradiation of the corresponding diazo precursors and fully characterized by ESR in a rigid matrix at low temperature. It has been demonstrated that anthryl groups can act as excellent reservoirs for the unpaired electrons as well as relatively effective kinetic protectors for carbene.  相似文献   

19.
A series of [Re(2)(μ-ER)(2)(CO)(6)(μ-pydz)] complexes have been synthesized (E = S, R = C(6)H(5), 2; E = O, R = C(6)F(5), 3; C(6)H(5), 4; CH(3), and 5; H, 6), starting either from [Re(CO)(5)O(3)SCF(3)] (for 2 and 4), [Re(2)(μ-OR)(3)(CO)(6)](-) (for 3 and 5), or [Re(4)(μ(3)-OH)(4)(CO)(12)] (for 6). Single-crystal diffractometric analysis showed that the two μ-phenolato derivatives (3 and 4) possess an idealized C(2) symmetry, while the μ-benzenethiolato derivative (2) is asymmetrical, because of the different conformation adopted by the phenyl groups. A combined density functional and time-dependent density functional study of the geometry and electronic structure of the complexes showed that the lowest unoccupied molecular orbital (LUMO) and LUMO+1 are the two lowest-lying π* orbitals of pyridazine, whereas the highest occupied molecular orbitals (HOMOs) are mainly constituted by the "t(2g)" set of the Re atoms, with a strong Re-(μ-E) π* character. The absorption spectra have been satisfactorily simulated, by computing the lowest singlet excitation energies. All the complexes exhibit one reversible monoelectronic reduction centered on the pyridazine ligand (ranging from -1.35 V to -1.53 V vs Fc(+)|Fc). The benzenethiolato derivative 2 exhibits one reversible two-electron oxidation (at 0.47 V), whereas the OR derivatives show two close monoelectronic oxidation peaks (ranging from 0.85 V to 1.35 V for the first peak). The thioderivative 2 exhibits a very small electrochemical energy gap (1.9 eV, vs 2.38-2.70 eV for the OR derivatives), and it does not show any photoluminescence. The complexes containing OR ligands show from moderate to poor photoluminescence, in the range of 608-708 nm, with quantum yields decreasing (ranging from 5.5% to 0.07%) and lifetimes decreasing (ranging from 550 ns to 9 ns) (3 > 4 > 6 ≈ 5) with increasing emission wavelength. The best emitting properties, which are closely comparable to those of the dichloro complex (1), are exhibited by the pentafluorophenolato derivative (3).  相似文献   

20.
Valence photoelectron (PE) spectra have been measured for ReO(3)Me using a synchrotron source for photon energies ranging between 20 and 110 eV. Derived branching ratios (BR) and relative partial photoionization cross sections (RPPICS) are interpreted in the context of a bonding model calculated using density functional theory (DFT). Agreement between calculated and observed ionization energies (IE) is excellent. The 5d character of the orbitals correlates with the 5p --> 5d resonances of the associated RPPICS; these resonances commence around 47 eV. Bands with 5d character also show a RPPICS maximum at 35 eV. The RPPICS associated with the totally symmetric 4a(1) orbital, which has s-like character, shows an additional shape resonance with an onset of 43 eV. The PE spectrum of the inner valence and core region measured with photon energies of 108 and 210 eV shows ionization associated with C 2s, O 2s, and Re 4f and 5p electrons. Absorption spectra measured in the region of the O1s edge showed structure assignable to excitation to the low lying empty "d" orbitals of this d(0) molecule. The separation of the absorption bands corresponded with the calculated orbital splitting and their intensity with the calculated O 2p character. Broad bands associated with Re 4d absorption were assigned to (2)D(5/2) and (2)D(3/2) hole states. Structure was observed associated with the C1s edge but instrumental factors prevented firm assignment. At the Re 5p edge, structure was observed on the (2)P(3/2) absorption band resulting from excitation to the empty "d" levels. The intensity ratios differed from that of the O 1s edge structure but were in good agreement with the calculated 5d character of these orbitals. An absorption was observed at 45 eV, which, in the light of the resonance in the 4a(1) RPPICS, is assigned to a 4a(1) --> ne, na(2) transition. The electronic structure established for ReO(3)Me differs substantially from that of TiCl(3)Me and accounts for the difference in chemical behavior found for the two complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号