首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the impact of random synchronization errors on the performance of ground-based telescope array receivers for an inter-planetary optical deep-space communication (ODSC) link is investigated. An adaptive method based on Kalman filters is developed for the synchronization and combination of different telescope signals in the array. An end-to-end simulation platform for ODSC link between Earth and planet Mars is implemented that incorporates pulse-position modulation (PPM), direct-detection array receivers, and photon-counting detectors. The effects of atmospheric turbulence and background noise are also modeled. The performance of array receivers is evaluated in terms of probability of symbol error and achievable data rates. The simulation results show that the Kalman filter-based synchronization scheme keeps the synchronization induced power losses to less than 1 dB. The analysis also shows that in the worst-case operational scenario and presence of random synchronization errors, an array consisting of hundred, 1 m telescopes performs almost similar to a single 10 m telescope. Hence, the degradation in the combined signal due to synchronization errors places a minor limitation on the number of telescopes in a telescope array receiver consisting of up to 100 telescope elements.  相似文献   

2.
In free-space optical communication links, atmospheric turbulence causes fluctuations in both the intensity and the phase of the received light signal, impairing link performance. In this paper, we describe several communication techniques to mitigate turbulence-induced intensity fluctuations, i.e., signal fading. These techniques are applicable in the regime in which the receiver aperture is smaller than the correlation length of the fading, and the observation interval is shorter than the correlation time of the fading. We assume that the receiver has no knowledge of the instantaneous fading state. The techniques we consider are based on the statistical properties of fading, as functions of both temporal and spatial coordinates. Our approaches can be divided into two categories: temporal domain techniques and spatial domain techniques. In the spatial domain techniques, one must employ at least two receivers to collect the signal light at different positions or from different spatial angles. Spatial diversity reception with multiple receivers can be used to overcome turbulence-induced fading. When it is not possible to place the receivers sufficiently far apart, the fading at different receivers is correlated, reducing the diversity gain. We describe a ML detection technique to reduce the diversity gain penalty caused by such fading correlation. In the temporal domain techniques, one employs a single receiver. When the receiver knows only the marginal statistics of the fading, a symbol-by-symbol ML detector can be used to optimize performance. When the receiver also knows the temporal correlation of the fading, maximum-likelihood sequence detection (MLSD) can be employed, yielding a further performance improvement, but at the cost of very high complexity. We describe two reduced-complexity implementations of the MLSD, which make use of a single-step Markov chain model for the fading correlation in conjunction with per-survivor processing. Next, we also investigate the performance of using error-control coding and pilot symbol-assisted detection schemes through atmospheric turbulence channels.  相似文献   

3.
Free-space laser communication systems have the potential to provide flexible, high-speed connectivity suitable for long-haul intersatellite and deep-space links. For these applications, power-efficient transmitter and receiver designs are essential for cost-effective implementation. State-of-the-art designs can leverage many of the recent advances in optical communication technologies that have led to global wide-band fiber-optic networks with multiple Tbit/s capacities. While spectral efficiency has long been a key design parameter in the telecommunications industry, the many THz of excess channel bandwidth in the optical regime can be used to improve receiver sensitivities where photon efficiency is a design driver. Furthermore, the combination of excess bandwidth and average-power-limited optical transmitters has led to a new paradigm in transmitter and receiver design that can extend optimized performance of a single receiver to accommodate multiple data rates. This paper discusses state-of-the-art optical transmitter and receiver designs that are particularly well suited for average-power-limited photon-starved links where channel bandwidth is readily available. For comparison, relatively simple direct-detection systems used in short terrestrial or fiber optic links are discussed, but emphasis is placed on mature high-performance photon-efficient systems and commercially available technologies suitable for operation in space. The fundamental characteristics of optical sources, modulators, amplifiers, detectors, and associated noise sources are reviewed along with some of the unique properties that distinguish laser communication systems and components from their RF counterparts. Also addressed is the interplay between modulation format, transmitter waveform, and receiver design, as well as practical tradeoffs and implementation considerations that arise from using various technologies.  相似文献   

4.
于刚  谢小平  赵卫  汪伟  段弢 《光学学报》2012,32(9):906006-75
基于大气湍流影响下的空间相干光通信系统模型和孔径平均效应的平面波模型,通过数值模拟研究了弱光强波动条件下孔径平均效应以及大气湍流内外尺度对相干光通信系统误码率和接收孔径直径最优值的影响。研究结果表明:孔径平均效应能够有效减小相干光通信系统的误码率,改善系统性能;原始信噪比越高,传输距离越短,波长越长,相位补偿模式的J值越大,接收孔径直径越接近最优值,孔径平均效应对误码率的改善效果越明显;孔径平均效应会影响接收孔径直径的最优值,相位补偿模式的J值越大,影响越明显;系统误码率和接收孔径直径最优值会随着大气湍流内尺度的增大而相应增大,随着大气湍流外尺度的减小而相应减小。研究结果将为空间相干光通信系统设计提供必要的理论依据。  相似文献   

5.
水下光通信充分利用了海水对激光的衰减窗口效应,具有隐蔽、安全、非接触和快速机动等特性,兼具无线通信和光纤通信的优点,其关键技术在于光收发端机的研制;PPM(Pulse Position Modulation)数字脉冲位置调制具有低平均功率和高峰值功率等特性,特别适合用于无线数字光通信。两者性能的融合需要高灵敏度数字光接收机的实现。利用阵列光电检测接收、高速A/D转换和信号处理等相关技术,采用DSP处理器,高灵敏度的数字光PPM接收机得以实现,实验和测试表明它大大降低了接收机对于整个系统信噪比的要求,获得了较好的性能。  相似文献   

6.
Considering free-space optical communication systems, we analyze the performance of the intensity scintillation of the optical-wave propagation in the slant path under different atmospheric turbulences. Under the zero scale, we derive the log-intensity spatial covariance function of the optical-wave propagation in the slant path through the turbulent atmosphere based on the modified Rytov method. We demonstrate the relationship between the reception performance of the distributed antenna array and the aperture-averaging factor. Furthermore, we also obtain the optimum aperture diameter, number of sub-antennas, and the sub-antenna interval of the array receiver in intermediate turbulence. This study can benefit the design of the receiving system for the optical-wave propagation in the slant path through the turbulent atmosphere in free-space optical communication systems.  相似文献   

7.
Free space optical interconnections(FSOIs) are anticipated to become a prevalent technology for short-range high-speed communication. FSOIs use lasers in board-to-board and rack-to-rack communication to achieve improved performance in next generation servers and are expected to help meet the growing demand for massive amounts of inter-card data communication. An array of transmitters and receivers arranged to create an optical bus for inter-card and card-to-backplane communication could be the solution. However, both chip heating and cooling fans produce temperature gradients and hot air flow that results in air turbulence inside the server, which induces signal fading and, hence, influences the communication performance. In addition, the proximity between neighboring transmitters and receivers in the array leads to crosstalk in the received signal, which further contributes to signal degradation. In this Letter, the primary objective is to experimentally examine the off-axis crosstalk between links in the presence of turbulence inside a server chassis. The effects of geometrical and inter-chassis turbulence characteristics are investigated and first-and second-order statistics are derived.  相似文献   

8.
黎明  曹阳  艾勇 《光子学报》2014,38(9):2325-2329
为了抑制空间光通信中大气湍流效应和降低误包率,提出了一种引入分布式多出多入技术,基于数字脉冲间隔调制的多出多入空间光通信系统.在弱湍流信道模型和APD探测器下建立了多出多入系统链路模型,推导了最大似然检测下的最佳阈值和误包率.计算结果表明:发射分集通过多路径传输平滑接收信号光强起伏|接收分集增加孔径平滑效应,减弱接收光强起伏|在发射平均功率、接收孔径总面积和背景噪音相同的条件下,数字脉冲间隔调制的不同多出多入系统存在几乎相同的最佳雪崩光电二极管增益|比较多出多入通信系统下三种调制方式,数字脉冲间隔调制的误包率较少劣于PPM调制而大大优于OOK调制.  相似文献   

9.
从几何光学理论出发,详细推导了斐索型光学合成孔径成像系统的近轴非相干成像条件,即子望远系统的角放大率等于系统的线性缩放因子。对于焦平面上的像点而言,合成孔径成像系统可等效为一个带有特殊形状孔径光阑的望远系统,这要求该孔径光栏的开口形状和位置分布与合成孔径成像系统各子系统孔径大小和位置分布相一致。我们由此得到了斐索型合成孔径成像系统的主要约束条件。  相似文献   

10.
利用大气湍流的光学相关函数确定湍流光学相关时间,并在此时间内通过成像系统的光学传递函数修正大气湍流效应后定标大望远镜(500mm口径,500m焦距)系统衍射极限倍数。  相似文献   

11.
Abstract

Multiple-input single-output (MISO) systems are employed in free space optical (FSO) links to mitigate the degrading effects of atmospheric turbulence. In this paper, we consider a MISO FSO system with practical transmitter and receiver configuration that consists of radial laser array with Gaussian beams and a Gaussian receiver aperture function. We have employed our previously derived formulation of the power scintillation in which Huygens–Fresnel principle was employed. Therefore, we choose system parameters within the range of validity of the wave structure functions. Using the on-off keying modulation and the log-normal probability distribution function, we quantify the average bit error rate (〈BER〉) of laser array beams in weak turbulence. It is observed that the radial array beams at the transmitter are more advantageous than the single Gaussian beam. However, increasing the number of array beamlets to more than three seems to have negligible effects on 〈BER〉 . It is further observed that 〈BER〉 decreases when the source size, the ring radius and the receiver aperture radius increase.  相似文献   

12.
李飞  王克逸 《应用光学》2019,40(3):369-372
基于目前研究较热的大口径衍射望远镜技术,提出一种在可见光范围内进行成像的衍射望远镜光学系统方案。该方案解决了目前衍射望远镜存在的成像频谱范围较窄的问题,可以在可见光范围内获取彩色图像,设计方法是将衍射元件沿径向分为3个通道,分别对R、G、B三个颜色通道进行成像,每个通道的成像带宽为40 nm,通过控制系统参数使3个通道的像在像面处重合,获取彩色图像。设计了基于25 m口径衍射主镜的三通道望远镜光学系统,并对该系统进行建模仿真,仿真结果与设计理论相符。该方案可以增加成像的频谱范围,其像面光斑具有与单通道系统像面光斑近乎相同的主瓣宽度。  相似文献   

13.
Bit-interleaved coded modulation (BICM) has attracted considerable attention from the research community in the past three decades, because it can achieve desirable error performance with relatively low implementation complexity for a large number of communication and storage systems. By exploiting the iterative demapping and decoding (ID), the BICM is able to approach capacity limits of coded modulation over various channels. In recent years, protograph low-density parity-check (PLDPC) codes and their spatially-coupled (SC) variants have emerged to be a pragmatic forward-error-correction (FEC) solution for BICM systems due to their tremendous error-correction capability and simple structures, and found widespread applications such as deep-space communication, satellite communication, wireless communication, optical communication, and data storage. This article offers a comprehensive survey on the state-of-the-art development of PLDPC-BICM and its innovative SC variants over a variety of channel models, e.g., additive white Gaussian noise (AWGN) channels, fading channels, Poisson pulse position modulation (PPM) channels, and flash-memory channels. Of particular interest is code construction, constellation shaping, as well as bit-mapper design, where the receiver is formulated as a serially-concatenated decoding framework consisting of a soft-decision demapper and a belief-propagation decoder. Finally, several promising research directions are discussed, which have not been adequately addressed in the current literature.  相似文献   

14.
郑晓桐  郭立新  程明建  李江挺 《物理学报》2018,67(21):214206-214206
可见光通信作为一种新型无线通信技术,在海上舰船场景中的应用吸引了广泛的关注.海上可见光通信系统受多种因素的影响,包括海浪随机起伏和大气湍流,大气湍流将导致可见光信号的强度随机波动,降低可见光通信系统在大气中的链路质量.本文基于对数正态衰减分布,建立了采用重复编码的海上可见光通信的链路评估模型.在此基础上,根据Pierson-Moskowitz海谱,分析了海上风速、大气折射率结构常数、能见度、重复编码分集度以及接收器孔径对可见光通信系统平均误码率的影响.本文提出的海上大气链路评估模型可为海上可见光通信网络的搭建提供重要参考.  相似文献   

15.
Multiple-input/multiple-output (MIMO) techniques can lead to significant improvements of underwater acoustic communication capabilities. In this paper, receivers based on time reversal processing are developed for high frequency underwater MIMO channels. Time reversal followed by a single channel decision feedback equalizer, aided by frequent channel updates, is used to compensate for the time-varying inter-symbol interference. A parallel interference cancellation method is incorporated to suppress the co-channel interference in the MIMO system. The receiver performance is demonstrated by a 2008 shallow water experiment in Kauai, Hawaii. In the experiment, high frequency MIMO signals centered at 16 kHz were transmitted every hour during a 35 h period from an 8-element source array to a wide aperture 16-element vertical receiving array at 4 km range. The interference cancellation method is shown to generate significant performance enhancement, on average 2-4 dB in the output signal-to-noise ratio per data stream, throughout the 35 h MIMO transmissions. Further, communication performance and achieved data rates exhibit significant changes over the 35 h period as a result of stratification of the water column.  相似文献   

16.
大气信道中的大气湍流是影响无线激光通信系统性能的主要因素之一, 其引起的强度闪烁效应会对接收信号的提取和还原造成很大干扰。基于Gamma-Gamma概率分布的大气湍流信道统计模型, 研究了利用副载波相移键控(PSK)强度调制技术的大气光通信系统的误码特性; 推导了副载波二进制相移键控(BPSK)及开关键控(OOK)两种调制模式下的系统误码率表达式; 对在一定条件下的大气光通信系统, 比较了副载波BPSK和OOK两种调制模式的误码特性; 分析了链路特征、接收口径尺寸、通信波长和天顶角等因素对系统误码率的影响。结果表明, 增大接收孔径和通信波长都能有效地降低系统误码率, 而天顶角的增大则会使系统误码率增加, 副载波BPSK调制模式的误码特性要优于OOK调制模式的误码特性。  相似文献   

17.
We presented a new method to improve power efficiencies of the optical systems with Cassegrain telescope receivers by using vortex sources with optimized parameters. A typical model of optical systems with Cassegrain telescope receivers was established and power losses in the optical system under the H-V 5/7 turbulence model were analyzed in detail. The calculating results showed that power efficiency of the optical system can be improved from 76.48% to 97.25%. A reduced-scaled experiment was carried out and the experimental results showed that power efficiency of the optical system can be improved from 71.89% to 90.60%.  相似文献   

18.
星地激光通信中分布式接收阵列的特性研究   总被引:5,自引:0,他引:5  
向劲松  胡渝 《光学学报》2006,26(9):297-1302
星地激光通信中,发射机对准误差及大气湍流会引起接收信号衰落,对带前置光放大的阵列接收机,分析了分布式接收阵列的抗衰落性能。研究表明,分布式接收阵列对发射机对准误差引起的衰落具有一定抑制作用,阵列中各子接收孔径之间的距离可根据发射机对准误差及湍流的强弱进行优化设计。与传统式阵列相比,分布式阵列可以采用更窄的发射光束宽度,降低对发射功率的要求。分布式阵列的另一个重要特性还在于:当实际发射机对准误差标准差大于设计值时,通过调整阵列各子接收孔径之间的距离,可以在很大程度上降低发射机对准误差引起的功率损失。  相似文献   

19.
大气激光通信中多光束传输性能分析和信道建模   总被引:32,自引:6,他引:26  
马东堂  魏急波  庄钊文 《光学学报》2004,24(8):020-1024
多光束传输技术是克服大气激光通信中大气湍流效应的有效途径之一。首先从理论上分析了大气湍流对多光束大气激光通信系统性能的影响和多光束大气传输的光强起伏特性,然后利用统计分析的方法,建立了一个以传输距离z、光束数目n、发射孔径之间的距离St、接收孔径Dr等为参量的多光束大气传输信道模型。最后,结合相关文献提供的实验结果对该信道模型进行了实验验证和误码性能分析。结果表明,当S1≥√λz或Dr远大于大气湍流相干长度ρo时,随着n的增大,接收光强将趋于对数正态分布.降低了大气激光通信系统的误码率,从而验证了多光束传输对于克服大气湍流影响的有效性。  相似文献   

20.
We propose a design for a free space optical communications (FSOC) receiver terminal that offers an improved field of view (FOV) in comparison to conventional FSOC receivers. The design utilizes a microlens to couple the incident optical signal into an individual fiber in a bundle routed to remote optical detectors. Each fiber in the bundle collects power from a solid angle of space; utilizing multiple fibers enhances the total FOV of the receiver over typical single-fiber designs. The microlens-to-fiber-bundle design is scalable and modular and can be replicated in an array to increase aperture size. The microlens is moved laterally with a piezoelectric transducer to optimize power coupling into a given fiber core in the bundle as the source appears to move due to relative motion between the transmitter and receiver. The optimum position of the lens array is determined via a feedback loop whose input is derived from a position sensing detector behind another lens. Light coupled into like fibers in each array cell is optically combined (in fiber) before illuminating discrete detectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号