首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 574 毫秒
1.
Recently a triarylmethyl-based (TAM) radical has been developed for research in biological and other aqueous systems, and in low magnetic fields, 10 mT or less, large 1H dynamic nuclear polarization (DNP) enhancements have been reported. In this paper the DNP properties of this radical have been investigated in a considerably larger field of 1.4 T, corresponding to proton and electron Larmor frequencies of 60 MHz and 40 GHz, respectively. To avoid excessive microwave heating of the sample, an existing DNP NMR probe was modified with a screening coil, wound around the sample capillary and with its axis perpendicular to the electric component of the microwave field. It was found that with this probe the temperature increase in the sample after 4 s of microwave irradiation with an incident power of 10 W was only 16°C. For the investigations, 10 mM of the TAM radical was dissolved in deionized, but not degassed, water and put into a 1-mm i.d. and 6-mm long capillary tube. At 26°C the following results were obtained: (I) The relaxivity of the radical is 0.07 (mMs)−1, in accordance with the value extrapolated from low-field results; (II) The leakage factor is 0.63, the saturation factor at maximum power is 0.85, and the coupling factor is −0.0187. It is shown that these results agree very well with an analysis where the electron–dipolar interactions are the dominant DNP mechanism, and where the relaxation transitions resulting from these interactions are governed by translational diffusion of the water molecules. Finally, the possibilities of combining DNP with magnetic resonance microscopy (MRM) are discussed. It is shown that at 26°C the overall DNP-enhanced proton polarization should become maximal in an external field of 0.3 T and become comparable to the thermal equilibrium polarization in a field of 30 T, considerably larger than the largest high-resolution magnet available to date. It is concluded that DNP MRM in this field, which corresponds to a standard microwave frequency of 9 GHz, has the potential to significantly increase the sensitivity in NMR and MRI experiments of small aqueous samples doped with the TAM radical.  相似文献   

2.
A proton dynamic nuclear polarization (DNP) NMR signal enhancement (epsilon) close to thermal equilibrium, epsilon = 0.89, has been obtained at high field (B(0) = 5 T, nu(epr) = 139.5 GHz) using 15 mM trityl radical in a 40:60 water/glycerol frozen solution at 11 K. The electron-nuclear polarization transfer is performed in the nuclear rotating frame with microwave irradiation during a nuclear spin-lock pulse. The growth of the signal enhancement is governed by the rotating frame nuclear spin-lattice relaxation time (T(1rho)), which is four orders of magnitude shorter than the nuclear spin-lattice relaxation time (T(1n)). Due to the rapid polarization transfer in the nuclear rotating frame the experiment can be recycled at a rate of 1/T(1rho) and is not limited by the much slower lab frame nuclear spin-lattice relaxation rate (1/T(1n)). The increased repetition rate allowed in the nuclear rotating frame provides an effective enhancement per unit time(1/2) of epsilon(t) = 197. The nuclear rotating frame-DNP experiment does not require high microwave power; significant signal enhancements were obtained with a low-power (20 mW) Gunn diode microwave source and no microwave resonant structure. The symmetric trityl radical used as the polarization source is water-soluble and has a narrow EPR linewidth of 10 G at 139.5 GHz making it an ideal polarization source for high-field DNP/NMR studies of biological systems.  相似文献   

3.
The temperature dependence of the water-proton dynamic nuclear polarization (DNP) enhancement from Fremy’s salt nitroxide radicals was measured in a magnetic field of 9.2?T (corresponding to 260?GHz microwave (MW) and 392?MHz NMR frequencies) in the temperature range of 15–65?°C. The temperature could be determined directly from the proton NMR line shift of the sample. Very high DNP enhancements of ?38 (signal integral) or ?81 (peak intensity) could be achieved with a high-power gyrotron MW source. The experimental findings are compared with classical Overhauser theory for liquids, which is based on the translational and rotational motion of the molecules and with molecular dynamics calculations of the coupling factor.  相似文献   

4.
Portable X-band system for solution state dynamic nuclear polarization   总被引:2,自引:2,他引:0  
This paper concerns instrumental approaches to obtain large dynamic nuclear polarization (DNP) enhancements in a completely portable system. We show that at fields of 0.35 T under ambient conditions and at X-band frequencies, 1H enhancements of >100-fold can be achieved using nitroxide radical systems, which is near the theoretical maximum for 1H polarization using the Overhauser effect at this field. These large enhancements were obtained using a custom built microwave transmitter and a commercial TE102 X-band resonant cavity. The custom built microwave transmitter is compact, so when combined with a permanent magnet it is readily transportable. Our commercial X-band resonator was modified to be tunable over a range of approximately 9.5-10 GHz, giving added versatility to our fixed field portable DNP system. In addition, a field adjustable Halbach permanent magnet has also been employed as another means for matching the electron spin resonance condition. Both portable setups provide large signal enhancements and with improvements in design and engineering, greater than 100-fold 1H enhancements are feasible.  相似文献   

5.
In this communication, we report enhancements of nuclear spin polarization by dynamic nuclear polarization (DNP) in static and spinning solids at a magnetic field strength of 9T (250 GHz for g=2 electrons, 380 MHz for 1H). In these experiments, 1H enhancements of up to 170+/-50 have been observed in 1-13C-glycine dispersed in a 60:40 glycerol/water matrix at temperatures of 20K; in addition, we have observed significant enhancements in 15N spectra of unoriented pf1-bacteriophage. Finally, enhancements of approximately 17 have been obtained in two-dimensional 13C-13C chemical shift correlation spectra of the amino acid U-13C, 15N-proline during magic angle spinning (MAS), demonstrating the stability of the DNP experiment for sustained acquisition and for quantitative experiments incorporating dipolar recoupling. In all cases, we have exploited the thermal mixing DNP mechanism with the nitroxide radical 4-amino-TEMPO as the paramagnetic dopant. These are the highest frequency DNP experiments performed to date and indicate that significant signal enhancements can be realized using the thermal mixing mechanism even at elevated magnetic fields. In large measure, this is due to the high microwave power output of the 250 GHz gyrotron oscillator used in these experiments.  相似文献   

6.
We describe the design and initial performance results of a multi-sample dissolution dynamic-nuclear-polarization (DNP) polarizer based on a Helium-temperature NMR cryostat for use in a wide-bore NMR magnet with a room-temperature bore. The system is designed to accommodate up to six samples in a revolver-style sample changer that allows changing samples at liquid-Helium temperature and at pressures ranging from ambient pressure down to 1 mbar. The multi-sample setup is motivated by the desire to do repetitive in vivo measurements and to characterize the DNP process by investigating samples of different chemical composition. The system can be loaded with up to six samples simultaneously to reduce sample loading and unloading. Therefore, series of experiments can be carried out faster and more reliably. The DNP probe contains an oversized microwave cavity and includes EPR and NMR capabilities for monitoring the DNP process. In the solid state, DNP enhancements corresponding to ~45% polarization for [1-(13)C]pyruvic acid with a trityl radical have been measured. In the initial liquid-state acquisition experiments described here, the polarization was found to be ~13%, corresponding to an enhancement factor exceeding 16,000 relative to thermal polarization at 9.4 T and ambient temperature.  相似文献   

7.
We describe a new triply tuned (e(-), (1)H, and (13)C) resonance structure operating at an electron Larmor frequency of 139.5 GHz for dynamic nuclear polarization (DNP) and electron nuclear double-resonance (ENDOR) experiments. In contrast to conventional double-resonance structures, the body of the microwave cavity simultaneously acts as a NMR coil, allowing for increased efficiency of radiofrequency irradiation while maintaining a high quality factor for microwave irradiation. The resonator design is ideal for low-gamma-nuclei ENDOR, where sensitivity is limited by the fact that electron spin relaxation times are on the order of the RF pulse lengths. The performance is demonstrated with (2)H ENDOR on a standard perdeuterated bis-diphenylene-phenyl-allyl stable radical. In DNP experiments, we show that the use of this resonator, combined with a low microwave power setup (17 mW), leads to significantly higher (1)H signal enhancement (epsilon approximately 400 +/- 50) than previously achieved at 5-T fields. The results emphasize the importance of optimizing the microwave B(1) field by improving either the quality factor of the microwave resonator or the microwave power level.  相似文献   

8.
We describe a magnetic resonance spectrometer capable of EPR, dynamic nuclear polarization, and multinuclear high-resolution NMR. The operating field is 1.4 T, corresponding to Larmor frequencies of 40 GHz and 60 MHz for electrons and protons, respectively. The microwave side of the probe is based on a Fabry-Perot resonator (FPR ), an open structure that enhances power-to-field conversion for efficient saturation of the EPR for dynamic polarization, and further permits in situ detection for EPR. This allows the external field to be set at, rather than scanned for, the optimal DNP position. Moreover, we have found that adjustments necessary for maximizing DNP may be done via optimization of the EPR signal, a feature of particular significance for samples which exhibit NMR signals on the borderline of detectability, i.e., samples for which DNP is of special importance. 'H and '3C polarization enhancements achieved using the FPR are compared with devices used by others, in particular the horn /reflector system used by Wind and co-workers. Direct '3C enhancements large enough to detect 2.5 x 10'6 spins in (fluoranthenyl)2 PF6 after a single one-second polarization period have been obtained, and the first high-field 'Li DNP results are also presented.  相似文献   

9.
The volume of polarized sample and the delay required between successive polarizations of samples represent serious constraints for dynamic nuclear polarization (DNP) applications. With these limitations in mind, a DNP polarizer, based on a super-wide bore (150-mm diameter) vertical magnet operating at 3.35?T, was designed. The working diameter for loading/unloading samples is equal to 46?mm and the microwave cavity can accommodate up to three samples. The cryostat can be cooled to 4.2?K in typically 2?h and filled with liquid helium in 1?h. Once filled with liquid helium, the cryostat hold time is on the order of 4?h and a minimum temperature of 1.19?K can be reached. In situ polarization levels at low temperature were measured between 5 and 10?% in single and multiple samples of 13C-labeled urea and glycine.  相似文献   

10.
This article provides an overview of polarizing mechanisms involved in high-frequency dynamic nuclear polarization (DNP) of frozen biological samples at temperatures maintained using liquid nitrogen, compatible with contemporary magic-angle spinning (MAS) nuclear magnetic resonance (NMR). Typical DNP experiments require unpaired electrons that are usually exogenous in samples via paramagnetic doping with polarizing agents. Thus, the resulting nuclear polarization mechanism depends on the electron and nuclear spin interactions induced by the paramagnetic species. The Overhauser Effect (OE) DNP, which relies on time-dependent spin–spin interactions, is excluded from our discussion due the lack of conducting electrons in frozen aqueous solutions containing biological entities. DNP of particular interest to us relies primarily on time-independent, spin-spin interactions for significant electron–nucleus polarization transfer through mechanisms such as the Solid Effect (SE), the Cross Effect (CE) or Thermal Mixing (TM), involving one, two or multiple electron spins, respectively. Derived from monomeric radicals initially used in high-field DNP experiments, bi- or multiple-radical polarizing agents facilitate CE/TM to generate significant NMR signal enhancements in dielectric solids at low temperatures (<100 K). For example, large DNP enhancements (∼300 times at 5 T) from a biologically compatible biradical, 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL), have enabled high-resolution MAS NMR in sample systems existing in submicron domains or embedded in larger biomolecular complexes. The scope of this review is focused on recently developed DNP polarizing agents for high-field applications and leads up to future developments per the CE DNP mechanism. Because DNP experiments are feasible with a solid-state microwave source when performed at <20 K, nuclear polarization using lower microwave power (<100 mW) is possible by forcing a high proportion of biradicals to fulfill the frequency matching condition of CE (two EPR frequencies separated by the NMR frequency) using the strategies involving hetero-radical moieties and/or molecular alignment. In addition, the combination of an excited triplet and a stable radical might provide alternative DNP mechanisms without the microwave requirement.  相似文献   

11.
A spectrometer specifically designed for systematic studies of the spin dynamics underlying Dynamic Nuclear Polarization (DNP) in solids at low temperatures is described. The spectrometer functions as a fully operational NMR spectrometer (144 MHz) and pulse EPR spectrometer (95 GHz) with a microwave (MW) power of up to 300 mW at the sample position, generating a MW B(1) field as high as 800 KHz. The combined NMR/EPR probe comprises of an open-structure horn-reflector configuration that functions as a low Q EPR cavity and an RF coil that can accommodate a 30-50 μl sample tube. The performance of the spectrometer is demonstrated through some basic pulsed EPR experiments, such as echo-detected EPR, saturation recovery and nutation measurements, that enable quantification of the actual intensity of MW irradiation at the position of the sample. In addition, DNP enhanced NMR signals of samples containing TEMPO and trityl are followed as a function of the MW frequency. Buildup curves of the nuclear polarization are recorded as a function of the microwave irradiation time period at different temperatures and for different MW powers.  相似文献   

12.
In this communication, we report enhancements of nuclear spin polarization by dynamic nuclear polarization (DNP) in static and spinning solids at a magnetic field strength of 9 T (250 GHz for g = 2 electrons, 380 MHz for 1H). In these experiments, 1H enhancements of up to 170 ± 50 have been observed in 1-13C-glycine dispersed in a 60:40 glycerol/water matrix at temperatures of 20 K; in addition, we have observed significant enhancements in 15N spectra of unoriented pf1-bacteriophage. Finally, enhancements of ∼17 have been obtained in two-dimensional 13C–13C chemical shift correlation spectra of the amino acid U–13C, 15N-proline during magic angle spinning (MAS), demonstrating the stability of the DNP experiment for sustained acquisition and for quantitative experiments incorporating dipolar recoupling. In all cases, we have exploited the thermal mixing DNP mechanism with the nitroxide radical 4-amino-TEMPO as the paramagnetic dopant. These are the highest frequency DNP experiments performed to date and indicate that significant signal enhancements can be realized using the thermal mixing mechanism even at elevated magnetic fields. In large measure, this is due to the high microwave power output of the 250 GHz gyrotron oscillator used in these experiments.  相似文献   

13.
Dynamic nuclear polarization (DNP) is used to enhance signals in NMR and MRI experiments. During these experiments microwave (MW) irradiation mediates transfer of spin polarization from unpaired electrons to their neighboring nuclei. Solid state DNP is typically applied to samples containing high concentrations (i.e. 10–40?mM) of stable radicals that are dissolved in glass forming solvents together with molecules of interest. Three DNP mechanisms can be responsible for enhancing the NMR signals: the solid effect (SE), the cross effect (CE), and thermal mixing (TM). Recently, numerical simulations were performed to describe the SE and CE mechanisms in model systems composed of several nuclei and one or two electrons. It was shown that the presence of core nuclei, close to DNP active electrons, can result in a decrease of the nuclear polarization, due to broadening of the double quantum (DQ) and zero quantum (ZQ) spectra. In this publication we consider samples with high radical concentrations, exhibiting broad inhomogeneous EPR line-shapes and slow electron cross-relaxation rates, where the TM mechanism is not the main source for the signal enhancements. In this case most of the electrons in the sample are not affected by the MW field applied at a discrete frequency. Numerical simulations are performed on spin systems composed of several electrons and nuclei in an effort to examine the role of the DNP inactive electrons. Here we show that these electrons also broaden the DQ and ZQ spectra, but that they hardly cause any loss to the DNP enhanced nuclear polarization due to their spin-lattice relaxation mechanism. Their presence can also prevent some of the polarization losses due to the core nuclei.  相似文献   

14.
In the 1990’s we initiated development of high frequency gyrotron microwave sources with the goal of performing dynamic nuclear polarization at magnetic fields (∼5–23 T) used in contemporary NMR experiments. This article describes the motivation for these efforts and the developments that led to the operation of a gyrotron source for DNP operating at 250 GHz. We also mention results obtained with this instrument that would have been otherwise impossible absent the increased sensitivity. Finally, we describe recent efforts that have extended DNP to 460 GHz and 700 MHz 1H frequencies.  相似文献   

15.
Dynamic nuclear polarization (DNP) has recently received much attention as a viable approach to enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy and the contrast of magnetic resonance imaging (MRI), where the significantly higher electron spin polarization of stable radicals is transferred to nuclear spins. In order to apply DNP-enhanced NMR and MRI signal to biological and in vivo systems, it is crucial to obtain highly polarized solution samples at ambient temperatures. As stable radicals are employed as the source for the DNP polarization transfer, it is also crucial that the highly polarized sample lacks residual radical concentration because the polarized molecules will be introduced to a biological system that will be sensitive to the presence of radicals. We developed an agarose-based porous media that is covalently spin-labeled with stable radicals. The loading of solvent accessible radical is sufficiently high and their mobility approximates that in solution, which ensures high efficiency for Overhauser mechanism induced DNP without physically releasing any measurable radical into the solution. Under ambient conditions at 0.35 T magnetic field, we measure the DNP enhancement efficiency of (1)H signal of stagnant and continuously flowing water utilizing immobilized stable nitroxide radicals that contain two or three ESR hyperfine splitting lines and compare them to the performance of freely dissolved radicals.  相似文献   

16.
Dynamic nuclear polarization (DNP) is investigated in the liquid state using a model system of Frémy's salt dissolved in water. Nuclear magnetic resonance signal enhancements at 0.34 and 3.4?T of the bulk water protons are recorded as a function of the irradiation time and the polarizer concentration. The build-up rates are consistent with the T(1n) of the observed water protons at room temperature (for 9?GHz/0.34?T) and for about 50?±?10?°C at 94?GHz/3.4?T. At 94?GHz/3.4?T, we observe in our setup a maximal enhancement of -50 at 25?mM polarizer concentration. The use of Frémy's salt allows the determination of the saturation factors at 94?GHz by pulsed ELDOR experiments. The results are well consistent with the Overhauser DNP mechanism and indicate that higher enhancements at this intermediate frequency require higher sample temperatures.  相似文献   

17.
We have developed a dynamic nuclear polarization (DNP) system for the SANS-J-II spectrometer at the JRR-3 atomic research reactor of Japan Atomic Energy Agency (JAEA). The DNP system is composed of a split-type horizontal superconducting magnet (3.3 T), a Gunn oscillator as a microwave source (94 GHz), and a cryostat (1.2 K). In particular, a sample cell with 40 in inner diameter and the magnet with a field homogeneity of 5×10−5 in a volume of 25 mm×8 mm were employed to polarize samples with a diameter of 20 mm for the ultra small-angle scattering experiment using the magnetic lens installed at the SANS-J-II spectrometer [S. Koizumi, H. Iwase, J. Suzuki, T. Oku, R. Motokawa, H. Sasao, H. Tanaka, D. Yamaguchi, H.M. Shimizu, T. Hashimoto, J. Appl. Crystallogr. 40 (2007) s474]. We obtained the proton polarization |P|=32% in the polyethylene doped with 2,2,6,6-tetra-methyl-piperidine-1-oxyl (TEMPO).  相似文献   

18.
We present a calculation of the microwave field distribution in a magic angle spinning (MAS) probe utilized in dynamic nuclear polarization (DNP) experiments. The microwave magnetic field (B(1S)) profile was obtained from simulations performed with the High Frequency Structure Simulator (HFSS) software suite, using a model that includes the launching antenna, the outer Kel-F stator housing coated with Ag, the RF coil, and the 4mm diameter sapphire rotor containing the sample. The predicted average B(1S) field is 13μT/W(1/2), where S denotes the electron spin. For a routinely achievable input power of 5W the corresponding value is γ(S)B(1S)=0.84MHz. The calculations provide insights into the coupling of the microwave power to the sample, including reflections from the RF coil and diffraction of the power transmitted through the coil. The variation of enhancement with rotor wall thickness was also successfully simulated. A second, simplified calculation was performed using a single pass model based on Gaussian beam propagation and Fresnel diffraction. This model provided additional physical insight and was in good agreement with the full HFSS simulation. These calculations indicate approaches to increasing the coupling of the microwave power to the sample, including the use of a converging lens and fine adjustment of the spacing of the windings of the RF coil. The present results should prove useful in optimizing the coupling of microwave power to the sample in future DNP experiments. Finally, the results of the simulation were used to predict the cross effect DNP enhancement (?) vs. ω(1S)/(2π) for a sample of (13)C-urea dissolved in a 60:40 glycerol/water mixture containing the polarizing agent TOTAPOL; very good agreement was obtained between theory and experiment.  相似文献   

19.
A. Henstra 《Molecular physics》2013,111(7):859-871
Nuclear orientation via electron spin locking (NOVEL) is a technique to orient nuclear spins embedded in a solid. Like other methods of dynamic nuclear polarization (DNP) it employs a small amount of unpaired electron spins and uses a microwave field to transfer the polarization of these unpaired electron spins to the nuclear spins. Traditional DNP uses CW microwave fields, but NOVEL uses pulsed electron spin resonance (ESR) techniques: a 90 degree pulse–90 degree phase shift–locking pulse sequence is applied and during the locking pulse the polarization transfer is assured by satisfying the Hartmann–Hahn condition. The transfer is coherent and similar to coherence transfer between nuclear spins. However, NOVEL requires an extension of the existing theory to many, inequivalent nuclear spins and to arbitrary, i.e. high electron and nuclear spin polarization. In this paper both extensions are presented. The theory is applied to the system naphthalene doped with pentacene, where the proton spins are polarized using the photo-excited triplet states of the pentacene molecules and found to show excellent agreement with the experimentally observed evolution of the polarization transfer during the locking pulse.  相似文献   

20.
Dynamic Nuclear Polarization (DNP) of the 13C nucleus has been investigated for [1-13C]pyruvic acid, doped with the trityl radical OX063Me, at 4.64 T and 1.15 K. The dependence of the polarization on microwave frequency, radical concentration and electron saturation was studied. For optimized conditions, a 13C polarization equal to 64 ± 5% was obtained, an increase by more than a factor of two compared with earlier results at 3.35 T of the same system. It was furthermore observed that the addition of gadolinium, which resulted in a twofold polarization increase at 3.35 T, only resulted in a minor improvement at 4.64 T. The dependence of the electron saturation on microwave frequency and microwave power was quantified by first moment measurements which were obtained by nucleus–electron double resonance (NEDOR) experiments. Complete electron saturation was observed for a microwave frequency close to the centre frequency of the ESR line, and by using maximum power of the microwave source. The DNP build-up time at 4.64 T (3000 s) was prolonged by approximately a factor three over the build-up time at 3.35 T (1200 s). However, after approximately 20 min of microwave irradiation the polarization at 4.64 T exceeded the polarization at 3.35 T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号