首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The evaluation of nanomaterials intracellular distribution still remains a challenge in nanomedicine applications and toxicological studies. Synchrotron radiation X-ray microscopy combined with X-ray fluorescence (XRF) microspectroscopy provides unique information that has pushed the frontiers of biological research, particularly when investigating intracellular mechanisms. In this work, the presence of silica nanoparticles in in vitro cultured human lung epithelial cell line and freshly extract human monocytes has been investigated. For the uptake and intracellular distribution of NPs, cells were cultured on polymeric substrates (Mylar). The SiO2–NPs have been synthesized at JRC and characterized by dynamic light scattering, centrifugal liquid sedimentation, and transmission electron microscopy (TEM), whereas their interaction with cells was investigated with TEM and XRF. For the latter, we used TwinMic in scanning transmission mode coupled with low-energy XRF spectroscopy, paying particular attention to the distribution of different elements, namely, Fe, O, C, Si, and Mg. Si XRF signals recorded on cells exposed to uncoated silica and epoxy-coated silica nanoparticles are comparable, indicating low difference in cellular uptake and suggesting a similar interaction between nanoparticles and cells. However, the TEM analysis indicates a better affinity of the coated nanoparticles for the cell membrane. Moreover, the TEM analysis shows also the presence of nanoparticles in endosomes.  相似文献   

2.
A mechanistic understanding of interactions between carbon nanotubes (CNTs) and living systems has become imperative owing to the growing nanomedicine applications and the mounting societal concerns on nanosafety. The addition of different chemical groups leads to a significant change in the properties of CNTs, and the resulting functionalized CNTs are generating great interest in many biological applications, such as biosensors and transporters. This study aimed to assess the toxicity exhibited by carboxylic acid functionalized single-walled CNTs (SWCNTs) (with a diameter of 1–2 nm and mean length of 500 nm) and to elucidate possible molecular mechanisms underlying the biological effects of carboxylated SWCNTs in human primary monocytes. The results demonstrated that carboxylated SWCNTs were cytotoxic, triggering apoptosis and G2/M phase arrest in human primary monocytes. Flow cytometric and confocal microscopic analysis indicated that internalized carboxylated SWCNTs were mainly accumulated in the cytoplasm. Exposure of human primary monocytes to carboxylated SWCNTs led to interleukin-8 (IL-8) and interleukin-6 (IL-6) expression, reactive oxygen species (ROS) production, and nuclear factor-kappa B (NF-κB) activation in human primary monocytes. Pretreatment of human primary monocytes with antioxidants or NF-κB-specific inhibitor before exposure to carboxylated SWCNTs significantly abolished carboxylated SWCNTs-induced IL-8 and IL-6 expression. These results provide novel insights into the carboxylated SWCNTs-mediated chemokine induction and inflammatory responses in vitro.  相似文献   

3.
Field electron emission (FE) is a quantum tunneling process in which electrons are injected from materials (usually metals) into a vacuum under the influence of an applied electric field. In order to obtain usable electron current, the conventional way is to increase the local field at the surface of an emitter. For a plane metal emitter with a typical work function of 5 eV, an applied field of over 1 000 V/μm is needed to obtain a significant current. The high working field (and/or the voltage between the electrodes) has been the bottleneck for many applications of the FE technique. Since the 1960s, enormous effort has been devoted to reduce the working macroscopic field (voltage). A widely adopted idea is to sharpen the emitters to get a large surface field enhancement. The materials of emitters should have good electronic conductivity, high melting points, good chemical inertness, and high mechanical stiffness. Carbon nanotubes (CNTs) are built with such needed properties. As a quasi-one-dimensional material, the CNT is expected to have a large surface field enhancement factor. The experiments have proved the excellent FE performance of CNTs. The turn-on field (the macroscopic field for obtaining a density of 10 μA/cm2) of CNT based emitters can be as low as 1 V/μm. However, this turn-on field is too good to be explained by conventional theory. There are other observations, such as the non-linear Fowler-Nordheim plot and multi-peaks field emission energy distribution spectra, indicating that the field enhancement is not the only story in the FE of CNTs. Since the discovery of CNTs, people have employed more serious quantum mechanical methods, including the electronic band theory, tight-binding theory, scattering theory and density function theory, to investigate FE of CNTs. A few theoretical models have been developed at the same time. The multi-walled carbon nanotubes (MWCNTs) should be assembled with a sharp metal needle of nano-scale radius, for which the FE mechanism is more or less clear. Although MWCNTs are more common in present FE applications, the single-walled carbon nanotubes (SWCNTs) are more interesting in the theoretical point of view since the SWCNTs have unique atomic structures and electronic properties. It would be very interesting if people can predict the behavior of the well-defined SWCNTs quantitatively (for MWCNTs, this is currently impossible). The FE as a tunneling process is sensitive to the apex-vacuum potential barrier of CNTs. On the other hand, the barrier could be significantly altered by the redistribution of excessive charges in the micrometer long SWCNTs, which have only one layer of carbon atoms. Therefore, the conventional theories based upon the hypothesis of fixed potential (work function) would not be valid in this quasi-one-dimensional system. In this review, we shall focus on the mechanism that would be responsible for the superior field emission characteristics of CNTs. We shall introduce a multi-scale simulation algorithm that deals with the entire carbon nanotube as well as the substrate as a whole. The simulation for (5, 5) capped SWCNTs with lengths in the order of micrometers is given as an example. The results show that the field dependence of the apex-vacuum electron potential barrier of a long carbon nanotube is a more pronounced effect, besides the local field enhancement phenomenon.  相似文献   

4.
This site study was conducted in a chemical laboratory to evaluate nanomaterial emissions from 20–30-nm-diameter bundles of single-walled carbon nanotubes (CNTs) during product development activities. Direct-reading instruments were used to monitor the tasks in real time, and airborne particles were collected using various methods to characterize released nanomaterials using electron microscopy and elemental carbon (EC) analyses. CNT clusters and a few high-aspect-ratio particles were identified as being released from some activities. The EC concentration (0.87 μg/m3) at the source of probe sonication was found to be higher than other activities including weighing, mixing, centrifugation, coating, and cutting. Various sampling methods all indicated different levels of CNTs from the activities; however, the sonication process was found to release the highest amounts of CNTs. It can be cautiously concluded that the task of probe sonication possibly released nanomaterials into the laboratory and posed a risk of surface contamination. Based on these results, the sonication of CNT suspension should be covered or conducted inside a ventilated enclosure with proper filtration or a glovebox to minimize the potential of exposure.  相似文献   

5.
The possible role of iron in neurodegeneration was studied by various techniques: electron microscopy, enzyme-linked immunosorbent assay, M?ssbauer spectroscopy, atomic absorption, ultrasonography and magnetic resonance imaging. The measurements were made on human tissues extracted from liver and from brain structures involved in diseases of the human brain: substantia nigra (Parkinson's, PD), hippocampal cortex (Alzheimer's, AD) and globus pallidus (progressive supranuclear palsy, PSP). The sizes of the iron cores of ferritin, the main iron storage compound in tissues, were found to be smaller in brain than in liver. Brain ferritin has a higher proportion of H to L chains compared to liver. A significant decrease of the concentration of L chains in PD compared to control was found. No increase in the concentration of iron in PD versus control was detected; however, there was an increase of labile iron, which constitutes only 2‰ of brain iron. In AD an increase in the concentration of ferritin was noticed, without a significant increase in iron concentration. In PSP an increase of total iron was observed. Our findings suggest that the mechanisms leading to the death of nerve cells in these three diseases may be different, although all may be related to iron mediated oxidative stress.  相似文献   

6.
Combining iron (Fe) and tungsten (W) as a bimetallic catalyst, we synthesized high-yield single-wall carbon nanotubes (SWCNTs) of narrow diameter distribution by a hydrogen–argon arc discharge method. Raman spectra indicate that the diameters of SWCNTs prepared using the Fe–W catalysts are about 0.5 nm smaller than those using Fe catalyst alone. The transmission electron microscopy and X-ray diffraction studies show that the SWCNTs prepared by the bimetallic catalyst coexist with few graphite flakes and other amorphous carbon. At the W content of 2–4 at%, tungsten cannot be found in the SWCNT samples. Thus by using a simple two-step purification process, high-purity SWCNT samples can be obtained. We have demonstrated the growth mechanism for the high melting metal (such as W, Mo)–Fe catalyst synthesis of SWCNTs by the arc discharge method.  相似文献   

7.
The arrangement and construction of 1D carbon nanotubes (CNTs) into frameworks with two or more levels of structures is an essential step to demonstrate their intrinsic properties and promising applications for energy storage. Single‐walled CNTs (SWCNTs) are considered to have more excellent properties compared with multiwalled CNTs (MWCNTs), however, how to appropriately use SWCNTs as building blocks for nanocomposite electrodes is not well understood. Here, a composite cathode containing SWCNT@S coaxial nanocables for Li‐S battery is fabricated by a facile melt‐diffusion strategy. Beneficial from its sp2 carbon nanostructure, higher specific surface area, larger aspect ratio, and interconnected electron pathway, the SWCNT@S cathode have reversible capacities of 676, 441 and 311 mAh g?1 for the first discharging at 0.5 C, 100th discharging at 1.0 C, and discharging at 10.0 C, respectively. These capacities are much higher than the corresponding capacities of the MWCNT@S cathode. By introducing polyethylene glycol (PEG) as a physical barrier to trap the highly polar polysulfide species, the PEG modified SWCNT@S cathode afforded improved reversible capacities. The cycling stability of the reversible capacities is expected to be further improved. The SWCNTs can serve as scaffolds for Li‐S battery with much improved energy storage performance.  相似文献   

8.
This study presents the effect of the metal–support interaction in two systems: (1) iron particle, and (2) platinum particles, being supported on magnesium oxide (MgO) nanopowder in alcohol-CVD process for carbon nanotubes (CNTs) growth. The employment of the different metals but the same substrate (with equal molar ratio) resulted in the synthesis of single-walled CNTs (SWCNTs) or double-walled CNTs (DWCNTs), using iron and platinum, respectively. Furthermore, along with the prolongation of the process time, the decrease of the mean nanotubes diameter in case of iron-catalyzed materials was detected. Interestingly, the extention of the growth time in the synthesis using Pt/MgO resulted in the synthesis of the thicker mean nanotubes diameter. However, for both applied catalytic systems the reduction of the diameter distribution of the tubes and the increase of relative purity of the samples upon the growth time increase were detected.  相似文献   

9.
X-ray fluorescence (XRF) is a widely used method for in vivo elemental analysis. Particularly for bone, it is a non-invasive technique that provides information on composition without significant risk to the patient. XRF contributes a capability for measuring elements beneficial to human health, such as strontium. This is a proposed supplement that has been shown in clinical trials to reduce fracture risk in people diagnosed with osteoporosis. Although XRF is a viable method for quantifying bone strontium, there are still factors that constrain its effectiveness. X-ray attenuation through overlying soft tissue decreases the signal, consequently requiring correction before estimating the true concentration of strontium in bone. A correction factor can be applied to account for the reduced signal, but an accurate measurement of overlying soft tissue thickness is required. It has been shown that using the correlation between Compton peak count rate and overlying thickness can be used as an estimation of overlying tissue. Lucite is commonly used as a soft tissue substitute; however, its mean atomic number is appreciably lower than soft tissue, somewhat limiting its applicability. This study tests the feasibility of using cellulose filter papers as a substitute for overlying soft tissue to perform XRF analysis of strontium-doped hydroxyapatite bone phantoms. Mass attenuation coefficients are shown to be closer to those of soft tissue (International Commission on Radiation Units' four-component) than Lucite, and the Compton correlation is used to estimate thickness as a correction factor to quantify true strontium concentration.  相似文献   

10.
Single-walled carbon nanotubes (SWCNTs) and few-walled carbon nanotubes (FWCNTs) have been selectively synthesized by plasma enhanced chemical vapor deposition at a relative low temperature (550 °C) by tuning the thickness of iron catalyst. The parametric study and the optimization of the nanotube growth were undertaken by varying inductive power, temperature, catalyst thickness, and plasma to substrate distance. When an iron film of 3-5 nm represented the catalyst thickness for growing FWCNT arrays, SWCNTs were synthesized by decreasing the catalyst thickness to 1 nm. The nanotubes were characterized by field emission scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. Electron field emission properties of the nanotubes indicate that the SWCNTs exhibit lower turn-on field compared to the FWCNTs, implying better field emission performance.  相似文献   

11.
The effect of Fe and Ni catalysts on the synthesis of carbon nanotubes (CNTs) using atmospheric pressure chemical vapor deposition (APCVD) was investigated. Field emission scanning electron microscopy (FESEM) analysis suggests that the samples grow through a tip growth mechanism. High-resolution transmission electron microscopy (HRTEM) measurements show multiwalled carbon nanotubes (MWCNTs) with bamboo structure for Ni catalyst while iron filled straight tubes were obtained with the Fe catalyst. The X-ray diffraction (XRD) pattern indicates that nanotubes are graphitic in nature and there is no trace of carbide phases in both the cases. Low frequency Raman analysis of the bamboo-like and filled CNTs confirms the presence of radial breathing modes (RBM). The degree of graphitization of CNTs synthesized from Fe catalyst is higher than that from Ni catalyst as demonstrated by the high frequency Raman analysis. Simple models for the growth of bamboo-like and tubular catalyst filled nanotubes are proposed.  相似文献   

12.
纳米材料与蛋白质等生物大分子的相互作用是纳米材料生物效应和安全性研究的重要基础。本实验利用荧光光谱、同步荧光光谱、圆二色谱(CD)等方法研究了四种结构特性不同的水溶性羧基化碳纳米管(long-SWCNTs-COOH,short-SWCNTs-COOH,DWCNTs-COOH,MWCNTs-COOH)与人血清白蛋白(human serum albumin, HSA)的相互作用。实验结果显示:四种水溶性羧基碳纳米管均能猝灭HSA的内源荧光,但猝灭能力有所不同,相同浓度下不同水溶性羧基化碳纳米管对HSA的荧光猝灭作用遵循如下规律:DWCNTs-COOH<MWCNTs-COOH<long-SWCTs-COOH<short-SWCNTs-COOH;四种碳纳米管对HSA的同步荧光光谱影响表明,MWCNTs-COOH的作用位点更靠近色氨酸(Trp)残基,而DWCNTs-COOH的作用位点更靠近酪氨酸(Tyr)残基,而long-SWCNTs-COOH和short-SWCNTs-COOH对两种氨基酸残基的作用无明显差别;在碳纳米管作用下,HSA 的圆二色谱有微弱的变化,且与α-螺旋、β-折叠含量变化基本一致。结果表明,不同碳纳米管对HSA的荧光猝灭能力与它们的结构特性有关,两者作用过程中HSA构象基本不变,二级结构有微小变化,但无明显的剂量-效应关系。根据实验结果对可能的作用机制进行了讨论。  相似文献   

13.
The properties of iron present in human liver and human substantia nigra (SN) were compared. Mössbauer measurements have shown that iron is present in similar concentrations in SN and in the liver, mainly as ferritin-like iron. The size of the iron cores of ferritin, as obtained from electron microscopy, is much smaller in SN (3.6?±?0.4 nm) than in liver (5.7?±?0.5 nm). The small size in SN is in agreement with the low blocking temperature (about 10 K), determined by temperature dependent Mössbauer studies on whole tissues. ELISA studies have shown differences between SN and liver in the structures of the protein shells of ferritin. The H/L ratio (concentration of heavy to light chains) in liver is 0.40?±?0.02, while in SN it is 4.3?±?0.3. Another possible iron binding compound in SN is neuromelanin (NM). Mössbauer studies of neuromelanin, isolated from 22 SNs, demonstrated that this iron is superparamagnetic. The blocking temperature found for this neuromelanin iron is however much higher than that for ferritin.  相似文献   

14.
The action of single-walled carbon nanotubes (SWCNTs) on cells of the genetically engineered K12 TG1 strain of Escherichia coli, which have a luminescent phenotype generated by the cloning of the lux operon of the native luminescent marine bacterium Photobacterium leiognathi into the strain, is studied in this work. The survival rate of the bacterial cells and their morphological changes are studied by means of atomic force microscopy as a function of their exposure to SWCNTs.  相似文献   

15.
16.
以碳纳米管做模板,在不利用任何表面活性剂或催化剂情况下,通过溶剂热法成功合成均匀的TiO2:Eu3+纳米管。X射线衍射结果表明,该产物是TiO2的一种纯锐钛矿相。扫描电子显微镜及透射电子显微镜图像显示,所得到的TiO2:Eu3+纳米管在大小及分布上是均匀的,管壁的厚度约为8nm。提出了该纳米管可能的形成机制。发光光谱表明,由于5D0→7F2间的转换,TiO2:Eu3+纳米管会在612nm发出红光。此外,因为制备容易而且成本较低,这种合成路径还有望用来制备其他的一维无机纳米材料。  相似文献   

17.
以碳纳米管做模板,在不利用任何表面活性剂或催化剂情况下,通过溶剂热法成功合成均匀的TiO2:Eu3+纳米管。X射线衍射结果表明,该产物是TiO2的一种纯锐钛矿相。扫描电子显微镜及透射电子显微镜图像显示,所得到的TiO2:Eu3+纳米管在大小及分布上是均匀的,管壁的厚度约为8nm。提出了该纳米管可能的形成机制。发光光谱表明,由于5D0→7F2间的转换,TiO2:Eu3+纳米管会在612nm发出红光。此外,因为制备容易而且成本较低,这种合成路径还有望用来制备其他的一维无机纳米材料。  相似文献   

18.
The geometries,formationenergies and electronic band structures of (8, 0) and (14, 0) singlewailed carbon nanotubes (SWCNTs) with various defects, inehlding vaeaney, Stone-Wales defect, and octagon pentagon pair defect, have been investigated within the framework of the density- huictional theory (DFT), and the influence of the concentration within the same style of deflect on the physical and chenfical properties of SWCNTs is also studied. The results suggest that the existeilcc of vacancy and octagon-pentagon pair deflect both reduce the band gap, whereas the SW- defect induces a band gap opening in CNTs. More int, erestingly, the band gaps of (8, 0) and (14, 0) SWCNTs eonfigurations with two octagon pentagon pair defect presents 0.517 eV and 0.163/eV, which arc a little smaller than the perfectt CNTs. Furthermore, with the concentration of defects increasing, there is a decreasing of band ga.p making the two types of SWCNTs change from a semiconductor to a metallic conductor.  相似文献   

19.
朱亚波  鲍振  蔡存金  杨玉杰 《物理学报》2009,58(11):7833-7837
运用分子动力学方法具体模拟研究单个碳纳米管(CNTs)在加热过程中的结构变化.选择多组不同结构的单壁碳纳米管(SWCNTs)和双壁碳纳米管(DWCNTs)作为研究对象,加热温度从室温开始到4000 K,压强保持为1 atm.结果表明单壁碳管中手性型结构热稳定性最好,其次是扶手椅型和锯齿型,当手性角相同时,直径大的热稳定性更高;对于双壁碳管,研究表明当双壁中至少之一为手性结构时其热稳定好,而内外壁均为锯齿结构的稳定性最差,该结果进一步支持了有关单壁碳管的结论;还从理论上探索了描述结构热稳定性的方式,并在键层 关键词: 单壁碳纳米管 双壁碳纳米管 分子动力学方法 热稳定性能  相似文献   

20.
Carbon nanotubes (CNTs) have been grown directly on a Si substrate without a diffusion barrier in ethanol diffusion flame using Ni as the catalyst after a photoresist-assisted catalyst annealing process. The growth mechanism of as-synthesized CNTs is confirmed by scanning electron microscopy, high resolution transmission-electron microscopy and energy-dispersive spectroscopy. The photoresist is the key for the formation of active catalyst particles during annealing process, which then result in the growth of CNTs. The catalyst annealing temperature has been found to affect the morphologies and field electron emission properties of CNTs significantly. The field emission properties of as-grown CNTs are investigated with a diode structure and the obtained CNTs exhibit enhanced characteristics. This technique will be applicable to a low-cost fabrication process of electron-emitter arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号