首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scanning force (SFM) and scanning tunneling (STM) microscopies are suitable techniques for the investigation of the structure of organic monolayers. Results are presented on thioalkane monolayers and thiolipid monolayers on gold. Both molecules attach covalently to the gold surface. STM images of the self assembled dodecanethiol layer display the molecular order of the film and reveal the presence of defects at the molecular scale. Moreover, domains and domain boundaries can be distinguished. Thiolipid layers on gold have been observed by SFM. The monolayer separates in solid-analogous star shaped domains and fluid-analogous domains. Imaging under water demonstrates the stability of the layer.  相似文献   

2.
A method is presented for depositing mixed self-assembled monolayers (SAMs) of dodecanethiol (C12) and 4'-methyl-1,1'-biphenyl-4-butane (H3C-C6H4-C6H4-(CH2)4-SH, BP4) by insertion of BP4 into a closely packed SAM of dodecanethiol on Au(111). Insertion takes place at defect sites such as domain boundaries or etch pits in the gold surface that are characteristic of C12 monolayers on gold. With a lower probability, insertion also occurs beside defect sites inside dodecanethiol domains. Insertion at defect sites results in domains of BP4, whereas insertion into C12 domains leads to isolated BP4 molecules. The isolated BP4 molecules are shown not to move at room temperature. By comparing the apparent height of the isolated BP4 molecules and BP4 domains, it is proposed that the isolated molecules have the same conformation as in the full-coverage phase. A simple two-layer model is proposed to characterize the current transport through BP4. The decay constant beta for the phenylene groups is deduced from the apparent STM heights of the inserted BP4 islands compared to the STM heights of the C12 closely packed monolayers.  相似文献   

3.
Hydrogen bonds with high selectivity and directionality are significant in harnessing molecules to form 2D supramolecular nanostructures. The competition and reorganization of hydrogen bond partners determine the ultimate molecular assembly and pattern in a 2D supramolecular system. In this study, multicomponent assemblies of a monodendron (5-benzyloxy-isophthalic acid derivative, BIC) and pyridylethynyl derivatives [1,4-bis(4-pyridylethynyl)-2,3-bis-dodecyloxy-benzene (PBPC12) and 1,4-bis(4-pyridylethynyl)-2,3-bis-octadecyloxy-benzene (PBPC18)] have been studied by scanning tunneling microscopy (STM) on a graphite surface. BIC molecules are able to associate with PBPC12 and PBPC18 molecules to induce the rearrangement of hydrogen bond partners and form coassembly structures. Interestingly, BIC acts as a template molecule in the coassembly process, and these multicomponent structures exhibit similar structural features to the assembly structures of BIC itself. The structural details of the coassembled structures are revealed by high-resolution STM images, and their relationship with the original BIC assemblies is discussed. These results provide important insights into the design and fabrication of hydrogen-bond-directed multicomponent molecular nanostructures on solid surfaces.  相似文献   

4.
We have designed monolayers with weak intermolecular interactions for use as placeholders in intelligent self- and directed-assembly. We have shown that these 1-adamantanethiolate monolayers are labile with respect to displacement by exposing them to dilute solutions of alkanethiols. These self-assembled monolayers (SAMs) of 1-adamantanethiol on Au{111} were probed using ambient scanning tunneling microscopy (STM), and their assembled order was determined. Solution deposition of the molecules results in a highly ordered hexagonally close-packed molecular lattice with a measured nearest neighbor distance of 6.9 +/- 0.4 A. The SAMs exhibit several rotational domains, but lack the protruding domain boundaries typical of alkanethiolate SAMs, and are similarly stable at room temperature. Co-deposition of alkanethiol and 1-adamantanethiol from solution results in alkanethiolate SAMs, except when using extremely low alkanethiol to 1-adamantanethiol concentration ratios. Facile displacement of low interaction strength SAMs can be exploited to enhance patterning using soft nanolithography.  相似文献   

5.
The optical and electrical properties of 11-20 nm thick films composed of approximately 4 nm gold nanoparticles (Au-NPs) interlinked by six organic dithiol or bis-dithiocarbamate derivatives were compared to investigate how these properties depend on the core of the linker molecule (benzene or cyclohexane) and its metal-binding substituents (thiol or dithiocarbamate). Films prepared with the thiol-terminated linker molecules, (1,4-bis(mercaptomethyl)benzene, 1,4-bis(mercaptomethyl)cyclohexane, 1,4-bis(mercaptoacetamido)benzene, and 1,4-bis(mercaptoacetamido)cyclohexane), exhibit thermally activated charge transport. The activation energies lie between 59 and 71 meV. These films show distinct plasmon absorption bands with maxima between 554 and 589 nm. In contrast, the film prepared with 1,4-cyclohexane-bis(dithiocarbamate) has a significantly red-shifted plasmon band ( approximately 626 nm) and a pronounced absorbance in the near infrared. The activation energy for charge transport is only 14 meV. These differences are explained in terms of the formation of a resonant state at the interface due to overlap of the molecular orbital and metal wave function, leading to an apparent increase in NP diameter. The film prepared with 1,4-phenylene-bis(dithiocarbamate) exhibits metallic properties, indicating the full extension of the electron wave function between interlinked NPs. In all cases, the replacement of the benzene ring with a cyclohexane ring in the center of the linker molecule leads to a 1 order of magnitude decrease in conductivity. A linear relationship is obtained when the logarithm of conductivity is plotted as a function of the number of nonconjugated bonds in the linker molecules. This suggests that nonresonant tunneling along the nonconjugated parts of the molecule governs the electron tunneling decay constant (beta(N)(-)(CON)), while the contribution from the conjugated parts of the molecule is weak (corresponding to resonant tunneling). The obtained value for beta(N)(-)(CON) is approximately 1.0 (per non-conjugated bond) and independent of the nanoparticle-binding group. Hence, the molecules can be viewed as consisting of serial connections of electrically insulating (nonconjugated) and conductive (conjugated) parts.  相似文献   

6.
We describe an annealing procedure for self-assembled monolayers (SAMs) that uses vapor-phase molecules to modify the local domain structure. Existing SAMs of decanethiolate on Au{111} were annealed using vapor-phase dodecanethiol molecules, so that the original and newly introduced molecules could be distinguished using scanning tunneling microscopy (STM). Molecules deposited from the vapor phase inserted at existing monolayer defect sites and domain boundaries, and at substrate step edges forming discrete network-like domains. The SAM molecular lattice can be preserved across molecular terrace boundaries between the decanethiolate and dodecanethiolate domains. Candidate molecular electronic component molecules were inserted from solution in the decanethiolate matrix as isolated molecules. These inserted molecules could then be surrounded by dodecanethiolate molecules introduced from the vapor phase, thus demonstrating a method for controlling the local environment of inserted molecules.  相似文献   

7.
A systematic scanning tunneling microscopy (STM) study of alkanethiol self-assembled monolayers (SAMs) is presented as a function of the bias voltage, tunneling current, and tip-termini separation. Stable and etch-pit free SAMs of close-packed undecanethiol/Au(111) were obtained after annealing in ultrahigh vacuum. STM revealed two distinct c(4x2) structures with four nonequivalent molecules per unit cell. For both structures, reversible contrast variations occur upon systematically tuning the bias voltage, the current, and the tip-termini distance. These contrast transitions originate from probing the corresponding local density of states (LDOS) of each molecule and not from the reorientation of the alkanethiol chains. The STM contrast is particularly sensitive to the tip-termini separation in the range of 0.5-2.5 A, reflecting the distance-dependence of LDOS. At a fixed tip elevation, the STM contrast is less sensitive to changes in bias within 0.1-1.2 V. For the first time, we demonstrate that LDOS may override the physical height variations in the STM topographic contrast for alkanethiol SAM systems.  相似文献   

8.
Self-assembly of aliphatic as well as aromatic thiol-terminated molecules was achieved onto a variety of gold surfaces using aqueous micellar solutions. Scanning tunneling microscopy experiments allowed us to demonstrate that the increase in the density of self-assembled monolayers (SAMs) prepared from micellar aqueous solvent compared to that prepared from ethanol directly originates from the decrease in defect density in the SAM (etch pits, domain boundaries) and not from a denser local packing of the molecules. Extending the use of such an aqueous solvent to various conjugated molecules, we report for the first time the insertion of these molecules from an aqueous solution in a dodecanethiol (DT) SAM and the ligand-exchange on the surface of DT stabilized gold nanoparticles deposited as a Langmuir-Blodgett film. Finally, we show that aqueous micellar DT solutions allow the preparation of DT SAMs on gold through a micropatterned resist mask. These results make possible the use of water to deliver molecules on a solid substrate to build molecular devices in a way compatible with lithography requirements in microelectronic processes.  相似文献   

9.
The structure of aldehyde-terminated alkanethiol self-assembled monolayers (SAMs) on Au(111) is investigated using scanning tunneling microscopy (STM), atomic force microscopy (AFM), and density functional theory (DFT) calculations. For the first time, the structures of aldehyde-terminated SAMs are revealed with molecular resolution. SAMs of 11-mercapto-1-undecanal exhibit the basic (radical3xradical3)R30 degrees periodicity and form various c(4x2) superstructures upon annealing. In conjunction with DFT studies, the models of the (radical3xradical3)R30 degrees and the c(4x2) superstructures are constructed. In comparison with alkanethiol SAMs, the introduction of aldehyde-termini results in smaller domain size, lower degree of long-range order, large coverage of disordered areas, and higher density of missing molecules and other point defects within domains of closely packed molecules. The origin of these structural differences is mainly attributed to the strong dipole-dipole interactions among the aldehyde termini.  相似文献   

10.
Hybrid supramolecular architectures have been fabricated with acceptor 1,4-bis(4-pyridylethynyl)-2,3-bis-dodecyloxy-benzene (PBP) and donor 2,6-bis(3,4,5-tris-dodecyloxy-phenyl)dithieno[3,2-b:2',3'-d]thiophene (DTT) compounds on highly oriented pyrolytic graphite (HOPG) surfaces, and their structures and molecular conductance are characterized by scanning tunneling microscopy/spectroscopy (STM/STS). Stable, one-component adlayers of PBP and DTT are also investigated. The coadsorption of two-component mixtures of PBP and DTT results in a variety of hybrid nanopattern architectures that differ from those of their respective one-component surface assemblies. Adjusting the acceptor/donor molar ratio in mixed adlayer assemblies results in dramatic changes in the structure of the hybrid nanopatterns. STS measurements indicate that the HOMO and LUMO energy levels of PBP and DTT on an HOPG surface are relatively insensitive to changes in the hybrid supramolecular architectures. These results provide important insight into the design and fabrication of two-dimensional hybrid supramolecular architectures.  相似文献   

11.
The conductivity of a single aromatic ring, perpendicular to its plane, is determined using a new strategy under ambient conditions and at room temperature by a combination of molecular assembly, scanning tunneling microscopy (STM) imaging, and STM break junction (STM‐BJ) techniques. The construction of such molecular junctions exploits the formation of highly ordered structures of flat‐oriented mesitylene molecules on Au(111) to enable direct tip/π contacts, a result that is not possible by conventional methods. The measured conductance of Au/π/Au junction is about 0.1 Go , two orders of magnitude higher than the conductance of phenyl rings connected to the electrodes by standard anchoring groups. Our experiments suggest that long‐range ordered structures, which hold the aromatic ring in place and parallel to the surface, are essential to increase probability of the formation of orientation‐controlled molecular junctions.  相似文献   

12.
The surface stress induced during the formation of alkanethiol self-assembled monolayers (SAMs) on gold from the vapor phase was measured using a micromechanical cantilever-based chemical sensor. Simultaneous in situ thickness measurements were carried out using ellipsometry. Ex situ scanning tunneling microscopy was performed in air to ascertain the final monolayer structure. The evolution of the surface stress induced during coverage-dependent structural phase transitions reveals features not apparent in average ellipsometric thickness measurements. These results show that both the kinetics of SAM formation and the resulting SAM structure are strongly influenced both by the surface structure of the underlying gold substrate and by the impingement rate of the alkanethiol onto the gold surface. In particular, the adsorption onto gold surfaces having large, flat grains produces high-quality self-assembled monolayers. An induced compressive surface stress of 15.9 +/- 0.6 N/m results when a c(4x2) dodecanethiol SAM forms on gold. However, the SAMs formed on small-grained gold are incomplete and an induced surface stress of only 0.51 +/- 0.02 N/m results. The progression to a fully formed SAM whose alkyl chains adopt a vertical (standing-up) orientation is clearly inhibited in the case of a small-grained gold substrate and is promoted in the case of a large-grained gold substrate.  相似文献   

13.
A novel alkyl-substituted polycyclic aromatic hydrocarbon (PAH) with D(2h) symmetry and 78 carbon atoms in the aromatic core (C78) was synthesized, thereby completing a homologous series of soluble PAH compounds with increasing size of the aromatic pi system (42, 60, and 78 carbon atoms). The optical band gaps were determined by UV/Vis and fluorescence spectroscopy in solution. Scanning tunneling microscopy (STM) and spectroscopy (STS) revealed diode-like current versus voltage (I-V) characteristics through individual aromatic cores in monolayers at the interface between the solution and the basal plane of graphite. The asymmetry of the current-voltage (I-V) characteristics increases with the increasing size of the aromatic core, and the concomitantly decreasing HOMO-LUMO gap. This is attributed to resonant tunneling through the HOMO of the adsorbed molecule, and an asymmetric position of the molecular species in the tunnel junction. Consistently, submolecularly resolved STM images at negative substrate bias are in good agreement with the calculated pattern for the electron densities of the HOMOs. The analysis provides the basis for tailoring rectification with a single molecule in an STM junction.  相似文献   

14.
We investigate the role of self-assembly monolayers in modulating the response of organic field-effect transistors. Alkanethiol monolayers of chain length n are self-assembled on the source and drain electrodes of pentacene field-effect transistors. The charge carrier mobility mu exhibits large fluctuations correlated with odd-even n. For n < 8, mu increases by 1 order of magnitude owing to the decrease of the hole injection barrier and the improved molecular order at the organic-metallic interface. For n > or = 8, mu decays exponentially with an inverse decay length beta = 0.6 A(-1). Our results show that (i) charge injection across the interface occurs by through-bond tunneling of holes mediated by the alkanethiol layer; (ii) in the long-chain regime, the charge injection across the alkanethiol monolayer completely governs the transistor response; (iii) the transistor is a sensitive gauge for probing charge transport across single monolayers. The odd-even effect is ascribed to the anisotropic coupling between the alkanethiol terminal sigma bond and the HOMO level of ordered pentacene molecules.  相似文献   

15.
The relationship between charge transport and mechanical properties of alkanethiol self-assembled monolayers (SAMs) on Au(111) films has been investigated using an atomic force microscope with a conductive tip. Molecular tilts induced by the pressure applied by the tip cause stepwise increases in film conductivity. A decay constant beta = 0.57 +/- 0.03 A-1 was found for the current passing through the film as a function of tip-substrate separation due to this molecular tilt. This is significantly smaller than the value of approximately 1 A-1 found when the separation is varied by changing the length of the alkanethiol molecules. Calculations indicate that, for isolated dithiol molecules S-bonded to hollow sites, the junction conductance does not vary significantly as a function of molecular tilt. The impact of S-Au bonding on SAM conductance is discussed.  相似文献   

16.
Understanding the effects of intermolecular interactions on the charge-transport properties of metal/molecule/metal junctions is an important step towards using individual molecules as building blocks for electronic devices. This work reports a systematic electron-transport investigation on a series of "core-shell"-structured oligo(phenylene ethynylene) (Gn-OPE) molecular wires. By using dendrimers of different generations as insulating "shells", the intermolecular π-π interactions between the OPE "cores" can be precisely controlled in single-component monolayers. Three techniques are used to evaluate the electron-transport properties of the Au/Gn-OPE/Au molecular junctions, including crossed-wire junction, scanning tunneling spectroscopy (STS), and scanning tunneling microscope (STM) break-junction techniques. The STM break-junction measurement reveals that the electron-transport pathways are strongly affected by the size of the side groups. When the side groups are small, electron transport could occur through three pathways, including through single-molecule junctions, double-molecule junctions, and molecular bridges between adjacent molecules formed by aromatic π-π coupling. The dendrimer shells effectively prohibit the π-π coupling effect, but at the same time, very large dendrimer side groups may hinder the formation of Au-S bonds. A first-generation dendrimer acts as an optimal shell that only allows electron transport through the single-molecule junction pathway, and forbids the other undesired pathways. It is demonstrated that the dendrimer-based core-shell strategy allows the single-molecule conductance to be probed in a homogenous monolayer without the influence of intermolecular π-π interactions.  相似文献   

17.
The electronic properties of alkanethiolate [CH3(CH2)nS-, n = 9 and 11] and alkaneselenolate [CH3(CH2)nSe-, n = 9 and 11] self-assembled monolayers on Au{111} have been quantitatively compared. Simultaneously acquired apparent tunneling barrier height (ATBH) and scanning tunneling microscopy (STM) images reveal that alkanethiolate molecules have a lower barrier to tunneling, and therefore a higher conductance than alkaneselenolates of the same alkyl chain length. Molecular and contact conductance differences were elucidated by using observed STM topographic tunneling height differences between the analogous species. This apparent topographic difference combined with comparative ATBH data indicate that the observed decrease in conductance for alkaneselenolates compared to alkanethiolates originates exclusively from the Au-chalcogenide physical, chemical, and electronic contact.  相似文献   

18.
Molecular ordering of pyrrolyl-terminated alkanethiol self-assembled monolayers (PyC(n)SH SAMs) on Au(111) substrates (n = 11 or 12) was investigated by scanning tunneling microscopy (STM) and various spectroscopic methods. The SAMs, which were in a disordered state when formed at room temperature, could be ordered either globally by thermal annealing at 70 degrees C, or locally via stimulation with repetitive STM scans. The ordered phase was characterized by small domains of molecular rows formed along 112[combining macron] directional set with an inter-row corrugation period close to 1.44 nm, in which defects were abundant. Based on the experimental results, the molecular arrangement in the ordered PyC(n)SH SAM was proposed to be a (5x radical3)rect structure with a molecular deficiency >or=10%. While mechanical interactions between molecules and scanning probe tips had been pointed out as the major cause of scan-induced phase transformations in other SAM systems, electronic or electrostatic factors were thought to affect considerably the scan-induced ordering process in this SAM system. From comparison of surface molecular coverage between disordered and thermally ordered SAMs of PyC(12)SH, it was inferred that the disorder could be ascribed to both kinetic and thermodynamic factors. The kinetic barrier to the ordered phase was supposed to result from strong dipole-dipole interactions among the pyrrolyl endgroups.  相似文献   

19.
Self-assembled monolayers (SAMs) of octanethiol and benzeneethanethiol were deposited on clean Pt(111) surfaces in ultrahigh vacuum (UHV). Highly resolved images of these SAMs produced by an in situ scanning tunneling microscope (STM) showed that both systems organize into a super-structure mosaic of domains of locally ordered, closely packed molecules. Analysis of the STM images indicated a (square root 3 x square root 3)R30 degrees unit cell for the octanethiol SAMs and a 4(square root 3 x square root 3)R30 degrees periodicity based on 2 x 2 basic molecular packing for the benzeneethanethiol SAMs under the coverage conditions investigated. SAMs on Pt(111) exhibited differences in molecular packing and a lower density of disordered regions than SAMs on Au(111). Electron transport measurements were performed using scanning tunneling spectroscopy. Benzeneethanethiol/Pt(111) junctions exhibited a higher conductance than octanethiol/Pt(111) junctions.  相似文献   

20.
Self-assembled monolayers of chrysene and indene on graphite have been observed and characterized individually with scanning tunneling microscopy (STM) at 80 K under low-temperature, ultrahigh vacuum conditions. These molecules are small, polycyclic aromatic hydrocarbons (PAHs) containing no alkyl chains or functional groups that are known to promote two-dimensional self-assembly. Energy minimization and molecular dynamics simulations performed for small groups of the molecules physisorbed on graphite provide insight into the monolayer structure and forces that drive the self-assembly. The adsorption energy for a single chrysene molecule on a model graphite substrate is calculated to be 32 kcal/mol, while that for indene is 17 kcal/mol. Two distinct monolayer structures have been observed for chrysene, corresponding to high- and low-density assemblies. High-resolution STM images taken of chrysene with different bias polarities reveal distinct nodal structure that is characteristic of the molecular electronic state(s) mediating the tunneling process. Density functional theory calculations are utilized in the assignment of the observed electronic states and possible tunneling mechanism. These results are discussed within the context of PAH and soot particle formation, because both chrysene and indene are known reaction products from the combustion of small hydrocarbons. They are also of fundamental interest in the fields of nanotechnology and molecular electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号