首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report extremely fast tandem ring-opening/ring-closing metathesis polymerization of a monomer containing two rather unreactive functional groups: cyclohexene and a terminal alkyne. When a third-generation Grubbs catalyst was used at low temperature, this tandem polymerization produced polymers with controlled molecular weights and narrow polydispersity indices. To explain this extremely fast polymerization, its reaction mechanism was studied. This new type of controlled polymerization allowed for the preparation of block copolymers using other conventional living metathesis polymerizations. The diene on the backbone of the polymer was postfunctionalized by sequential Diels-Alder and aza-Diels-Alder reactions, which led to selective functionalization depending on the stereochemistry of the diene.  相似文献   

2.
An Erratum has been published for this article in J Polym Sci Part A: Polym Chem (2004) 42 213 In this article, recent examples are reviewed of late-transition-metal catalysis applied to polymer topology control. By the judicious selection or design of late-transition-metal catalysts, polymers with a broad range of topologies, including linear, short-chain-branched, hyperbranched, dendritic, and cyclic topologies, have been successfully synthesized. A distinctive advantage of the catalyst approach is that polymers with complex topologies can be prepared in one pot from simple commercial monomers. A fundamental difference of the catalyst approach with respect to other approaches is that the polymer topology is controlled by the catalysts instead of the monomer structure. In our own laboratory, we have successfully used two strategies to control the polymer topology with late-transition-metal catalysts. In the first strategy, hyperbranched polymers are prepared by the direct free-radical polymerization of divinyl monomers through control of the competition between propagation and chain transfer with a cobalt chain-transfer catalyst. In the second strategy, polyethylene topology is successfully controlled by the regulation of the competition between propagation and chain walking with the Brookhart PdII-α-bisimine catalyst. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3680–3692, 2003  相似文献   

3.
An application of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) is presented for the fast on-line testing of solid catalysts activity in upgrading pyrolysis oils and/or gases of natural and synthetic polymers. Evaluation of the chemical conversion by a catalyst is simply and quickly performed in a Py-GC/MS instrument without any modification either of the micropyrolyser or the GC inlet. The pyrolysis products evolved from the sample pass through catalyst microbeds of some mm length and the GC/MS analysis of the converted products is performed on-line. Modification of polyolefin, styrene copolymer, polyester, polyamide, brominated epoxy resin and wood pyrolysate was carried out applying sodium type zeolite and medium acidic mesoporous aluminosilicate in the microbeds. The primary pyrolysis products are converted over the microbeds due to the catalytic activity of the bed material. Intramolecular hydrogen transfer reactions promoted by Na zeolite results in the isomerisation of alkenes and alkadienes evolved by pyrolysis from polyethylene and polypropylene. These basic catalysts were found to be effective for the elimination of brominated phenols from the pyrolysate of brominated epoxy resin. Cracking of alkane and alkene oligomer products of polyolefins to light isoalkenes occur over acidic mesoporous aluminosilicate. Certain compounds with polar groups evolved from polyester, polyamide, cellulose or lignin are removed by this catalyst. Alkenylaromatic compounds are simultaneously hydrogenated and polyaromatised in pyrolysis oils of styrene copolymers over both acidic and basic aluminosilicate catalysts tested.  相似文献   

4.
A hybrid polymerization system that combines the fast reaction kinetics of conventional free radical polymerization and the control of molecular weight and distribution afforded by ATRP has been developed. High‐free radical initiator concentrations in the range of 0.1–0.2 M were used in combination with a low concentration of ATRP catalyst. Conversions higher than 90% were achieved with ATRP catalyst concentrations of less than 20 ppm within 2 h for the hybrid ATRP system as compared with ATRPs where achieving such conversions would take up to 24 h. These reaction conditions lead to living polymerizations where polymer molecular weight increases linearly with monomer conversion. As in living polymerization and despite the fast rates and low ATRP catalyst concentrations, the polydispersity of the produced polymer remained below 1.30. Chain extension experiments from a synthesized macroinitiator were successful, which demonstrate the living characteristics of the hybrid ATRP process. Catalyst concentrations as low as 16 ppm were found to effectively mediate the growth of over 100 polymer chains per catalytic center, whereas at the same time negating the need for post polymerization purification given the low‐catalyst concentration. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2294–2301, 2010  相似文献   

5.
To elucidate the particle growth mechanism in propylene polymerization with high-yield MgCl2-supported Ziegler-Natta catalysts, observations have been carried out by electron microscopy on a series of samples having different degrees of polymer growth (from 0.1 to 1000 g/g of catalyst). Topics such as surface and bulk morphology, catalyst fragmentation, as well as distribution of the catalyst residues in the polymer have been investigated. The experimental data suggest that if the site distribution in the catalyst is uniform and the polymerization conditions are mild, the polymer growth starts uniformly throughout the catalyst particle, which then undergoes an even and progressive fragmentation into very fine units homeogeneously dispersed in the polymer matrix. The above results thus provide further experimental support to the particle growth mechanism outlined in the multigrain or polymeric flow models. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
The diiminepyridine ligand, made famous by Brookhart and Gibson a decade ago through its use in the first iron-containing olefin polymerization catalyst, also displays an amazing variety of ligand-centred reactions, including electron transfer, alkylation, dimerization and deprotonation. The present Perspective summarizes these reactions and also speculates on the links between ligand- and metal-centred reactivity.  相似文献   

7.
The use of liquid chromatography/mass spectrometry (LC/MS) to quantify drugs in biological matrices has been well established over the last decade. Extremely fast LC/MS methods are commonplace in the pharmaceutical industry for high-throughput Absorption, Distribution, Metabolism and Excretion (ADME) screening. However, to truly take full advantage of high-throughput ADME screening, a generic method is needed that eliminates the need to develop a new method for each new compound being screened. New developments in the stationary phase of turbulent flow columns has allowed us to develop an on-line biological sample cleanup method that is suitable for over 99% of the compounds in the Cephalon database.  相似文献   

8.
High Throughput experimentation has been well established as a tool in early stage catalyst development and catalyst and process scale-up today. One of the more challenging areas of catalytic research is polymer catalysis. The main difference with most non-polymer catalytic conversions is the fact that the product is not a well defined molecule and the catalytic performance cannot be easily expressed only in terms of catalyst activity and selectivity. In polymerization reactions, polymer chains are formed that can have various lengths (resulting in a molecular weight distribution rather than a defined molecular weight), that can have different compositions (when random or block co-polymers are produced), that can have cross-linking (often significantly affecting physical properties), that can have different endgroups (often affecting subsequent processing steps) and several other variations. In addition, for polyolefins, mass and heat transfer, oxygen and moisture sensitivity, stereoregularity and many other intrinsic features make relevant high throughput screening in this field an incredible challenge. For polycondensation reactions performed in the melt often the viscosity becomes already high at modest molecular weights, which greatly influences mass transfer of the condensation product (often water or methanol). When reactions become mass transfer limited, catalyst performance comparison is often no longer relevant. This however does not mean that relevant experiments for these application areas cannot be performed on small scale. Relevant catalyst screening experiments for polycondensation reactions can be performed in very efficient small scale parallel equipment. Both transesterification and polycondensation as well as post condensation through solid-stating in parallel equipment have been developed. Next to polymer synthesis, polymer characterization also needs to be accelerated without making concessions to quality in order to draw relevant conclusions.  相似文献   

9.
In the screening of complex mixtures, for example combinatorial libraries, natural extracts, and metabolic incubations, different approaches are used for integrated bioaffinity screening. Four major strategies can be used for screening of bioactive mixtures for protein targets—pre-column and post-column off-line, at-line, and on-line strategies. The focus of this review is on recent developments in post-column on-line screening, and the role of mass spectrometry (MS) in these systems. On-line screening systems integrate separation sciences, mass spectrometry, and biochemical methodology, enabling screening for active compounds in complex mixtures. There are three main variants of on-line MS based bioassays: the mass spectrometer is used for ligand identification only; the mass spectrometer is used for both ligand identification and bioassay readout; or MS detection is conducted in parallel with at-line microfractionation with off-line bioaffinity analysis. On the basis of the different fields of application of on-line screening, the principles are explained and their usefulness in the different fields of drug research is critically evaluated. Furthermore, off-line screening is discussed briefly with the on-line and at-line approaches.  相似文献   

10.
A laboratory system has been designed, constructed, and validated that reduces the complexity, time required, and data variability associated with catalytic microreactors that require post reaction steps prior to product analysis. In this work, a Varian (Walnut Creek, CA, USA) 3600 GC (gas chromatography) system coupled with a Saturn quadrupole ion trap mass spectrometer was used to perform mass spectral analysis in real-time catalytic cracking reactions. As this was an integrated reactor/analyzer, the GC column was exposed to temperatures beyond the degradation point of the column, and so selective ion storage RF waveform was used to remove the siloxane masses from the spectra. This produced lower detection limits and full scan data for identification. Mass/charge segmentation of the mass spectrometer allowed the complete product identification for electron impact spectra. Hexane was reacted over H-ZSM-5 catalyst for instrument validation. This produced a series of alkanes, alkenes, and aromatics with distributions consistent with that reported for the cracking of hexane.  相似文献   

11.
A model Phillips catalyst for ethylene polymerization, prepared by spin coating a Cr(III)(Cr(acac)3) precursor on a silicon wafer, was submitted to an oxidative activation. Laser ablation Fourier transform mass spectrometry provided direct information on molecular species at the silicon wafer surface during activation. At 350 degrees C the chromium precursor was degraded, while chromium oxide species were formed. The chromium concentration decreased with temperature. The activated model catalyst was active for ethylene polymerization. Using complementary techniques (Fourier transform infrared spectroscopy, laser desorption/ionization mass spectrometry), the polymer was identified as crystalline polyethylene. After 1 h of polymerization at 160 degrees C, dome-like structures were observed by atomic force microscopy. Their morphologies were constituted of regions of parallel aligned lamellae of polymer.  相似文献   

12.
Although atom transfer radical polymerization (ATRP) is often a controlled/living process, the growth rate of polymer films during surface‐initiated ATRP frequently decreases with time. This article investigates the mechanism behind the termination of film growth. Studies of methyl methacrylate and methyl acrylate polymerization with a Cu/tris[2‐(dimethylamino)ethyl]amine catalyst system show a constant but slow growth rate at low catalyst concentrations and rapid growth followed by early termination at higher catalyst concentrations. For a given polymerization time, there is, therefore, an optimum intermediate catalyst concentration for achieving maximum film thickness. Simulations of polymerization that consider activation, deactivation, and termination show trends similar to those of the experimental data, and the addition of Cu(II) to polymerization solutions results in a more constant rate of film growth by decreasing the concentration of radicals on the surface. Taken together, these studies suggest that at high concentrations of radicals, termination of polymerization by radical recombination limits film growth. Interestingly, stirring of polymerization solutions decreases film thickness in some cases, presumably because chain motion facilitates radical recombination. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 386–394, 2003  相似文献   

13.
A comprehensive mathematical model for styrene stereoregular polymerization was carried out. This model was generated by coupling the single particle growth model (SPGM) with kinetics model, to predict the effect of intraparticle mass transfer resistance and initial catalyst size on the polymerization kinetics. SPGM was derived based on a modified multigrain model (MMGM) to calculate the spatial-time evolution of styrene concentration under intraparticle mass transfer limitations. Then, the SPGM was solved simultaneously with kinetics model to estimate the polymerization rate and molecular weight distribution (MWD) under the above mentioned limitations. The results show that a significant radial distribution of styrene concentration across polymer growing. Moreover, the diffusion resistance was most intense at the early step of the polymerization and the effects of the polymerization rate are more strongly. Additionally, it is appear that increasing the initial catalyst size leads to a decrease in the rate of polymerization. For MWD, the model simulation show that the diffusion resistance led to have an increase in the molecular weight within a period of time similar to the one needed in the catalyst decay. The validation of the model with experimental data given a agreement results and shows that the model is able to predict monomer profile, polymerization rate, and MWD of syndiotactic polystyrene.  相似文献   

14.
The polymer–polymer composites bearing polyethylene and starch are obtained by polymerization filling. The polymerization of ethylene is carried out using catalyst system [TiCl4 + (С2H5)2AlCl] under mild conditions. It is found that the catalyst activity in the presence of a biopolymer is higher than that without the filler. The polyethylene matrix has a molecular mass of 1.26–1.40 M and features a melting point of 138–140°C, a high enthalpy, and a degree of crystallinity of 60–70%. Reduction in the decomposition temperature of the polymer–polymer composites and in the rate of mass loss compared to the unfilled polyethylene and biopolymers is detected. The stress-strain characteristics of the polymer matrix are improved; in particular, the elastic modulus and relative elongation at break are increased. The photooxidative degradation of the composites under the action of sunlight and UV radiation is studied. According to the data of IR spectroscopy, the polymer–polymer composites possess resistance to photooxidative aging 2–3 times lower than the unfilled polyethylene. The polymer–polymer composites subjected to UV radiation reveal a high intensity of growth of microorganisms: the degree of biofouling is up to four points.  相似文献   

15.
丁伟  孙颖  吕崇福  景慧  于涛  曲广淼 《应用化学》2011,28(10):1148-1154
以季戊四醇为原料,合成了2,2-二溴甲基-1,3-二溴丙烷(PEBr4),并以此为四官能度引发剂,Cu0粉/三-(2-二甲氨基乙基)胺(Me6-TREN)为催化体系,在离子液体中实现了丙烯酰胺(AM)的单电子转移活性自由基聚合(SET-LRP),得到了窄分子量分布的星形聚丙烯酰胺(PAM),Mw/Mn约为1.26(MGPCn=14.1×103,转化率为43.4%)。 采用1H NMR对PAM结构进行表征确认,并采用GPC测定了PAM的分子量及分子量分布;考察了水、单体/催化剂(引发剂)配比对聚合反应的影响。 结果表明,少量水的加入能够加快聚合反应,使链增长速率常数由kappp=0.042 4 h-1增加至kappp=0.148 6 h-1;催化剂、引发剂用量越大,AM的SET-LRP的聚合反应速率越快,聚合反应的可控性越好,Mn随催化剂用量的增大及引发剂用量的减小而增大,且与理论分子量相近,分子量分布均呈下降趋势。  相似文献   

16.
A rapid qualitative method using on-line column-switching liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed and validated for screening 13 target veterinary drugs: four macrolides - erythromycin A, josamycin (leucomycin A3), kitasamycin (leucomycin A5), and tylosin A; six (fluoro)quinolones - ciprofloxacin, danofloxacin, enrofloxacin, flumequine, oxolinic acid, and sarafloxacin; and lincomycin, virginiamycin M1, and trimethoprim in different animal muscles. Clindamycin, norfloxacin, nalidixic acid, oleandomycin, ormetoprim, and roxithromycin were used as the internal standards. After simple deproteination and analyte extraction of muscle samples using acetonitrile, the supernatant was subjected to on-line cleanup and direct analysis by LC/MS/MS. On-line cleanup with an extraction cartridge packed with hydrophilic-hydrophobic polymer sorbent followed by fast LC using a short C18 column resulted in a total analysis cycle of 6 min for 19 drugs. This screening method considerably reduced the time and the cost for the quantitative and confirmatory analyses. The application of a control point approach was also introduced and explained.  相似文献   

17.
The short-time polymerization of isoprene under the action of a TiCl4/MgCl2?i-Bu3Al heterogeneous catalyst has been investigated. Pulse mixing of the catalyst and monomer in a cylindrical tubular reactor with a certain length followed by ethanol injection has made it possible to carry out polymerization for 0.1?0.7 s. In the first 0.3 s, when there is a considerable rise in the activity of the catalyst, living polymerization of isoprene takes place. In this period, polyisoprene has up to 95% trans-1,4 units. Extending the polymerization time to 0.7 s diminishes the average molar mass of polyisoprene, broadens its molar mass distribution, and decreases the concentration of trans-1,4 units to 83%. The data of this study have been analyzed on the basis of the kinetic continuity of the polymer chain initiation and growth.  相似文献   

18.
丁伟  刘康  栾和鑫  于涛  曲广淼 《应用化学》2013,30(6):648-654
以咪唑、丙烯腈和溴辛烷等为原料,合成了新型阳离子型可聚合离子液体表面活性剂单体:氯化-1-正辛基-3-(4-丙烯酸丁酯基)咪唑(PMOIH8)。 以2-氯丙酰胺为引发剂,Cu0粉/三-(2-二甲氨基乙基)-Me-6-TREN为催化体系,采用单电子转移活性自由基聚合法对丙烯酰胺(AM)、PMOIH8进行了二元共聚合反应,合成了一种新型阳离子共聚丙烯酰胺/丙烯酸酯P(AM/PMOIH)。 FT-IR、MS和1H NMR分析表明,所得聚合物为目标产物,采用GPC测得聚合物的相对分子质量为2×103~14×103,相对分子质量分布Mw/Mn在1.21~1.75之间。 考察了催化剂、引发剂等因素对聚合的影响。 结果表明,降低催化剂用量,聚合反应速率变慢,链增长速率常数kappp由0.0168 min-1降低至0.0065 min-1,Mw/Mn由1.25~1.71增加至1.32~1.75,引发效率Ieff=90.24%;增加引发剂用量,Mw/Mn由1.25~1.71减小至1.21~1.68,kappp由0.0168 min-1增加至0.0201 min-1,Ieff增加至93.17%。  相似文献   

19.
Fast and effective protein digestion is a vital process for mass spectrometry (MS) based protein analysis. This study introduces a porous polymer membrane enzyme reactor (PPMER) coupled to nanoflow liquid chromatography-tandem MS (nLC-ESI-MS/MS) for on-line digestion and analysis of proteins. Poly (styrene-co-maleic anhydride) (PS-co-MAn) was fabricated by the breath figure method to make a porous polymer membrane in which the MAn group was covalently bound to enzyme. Based on this strategy, microscale PPMER (μPPMER) was constructed for on-line connection with the nLC-ESI-MS/MS system. Its capability for enzymatic digestion with bovine serum albumin (BSA) was evaluated with varied digestion periods. The on-line proteolysis of BSA and subsequent analysis with μPPMER-nLC-ESI-MS/MS revealed that peptide sequence coverage increased from 10.3% (digestion time 10 min) to 89.1% (digestion time 30 min). μPPMER can efficiently digest proteins due to the microscopic confinement effect, showing its potential application in fast protein identification and protease immobilization. Applications of on-line digestion using μPPMER with human plasma and urinary proteome samples showed that the developed on-line method yielded equivalent or better performance in protein coverage and identified more membrane proteins than the in-solution method. This may be due to easy accommodation of hydrophobic membrane proteins within membrane pores.  相似文献   

20.
The disperse composition of trans-1,4-polyisoprene granules and supported titatium–magnesium catalyst particles in the ultrarapid polymerization of isoprene within 0.1–0.7 s is studied. It is shown that within this period the alteration of external and internal fragmentations occurs between two fractions of polymer granules that are formed by 0.1 s of polymerization and already contain significantly fragmented catalyst particles. The correlation between these processes and molecular mass characteristics of trans-1,4-polyisoprene is investigated. It is found that the external fragmentation is accompanied by a decrease in the average molecular masses of the polymer, while the internal fragmentation leads to formation of a higher molecular mass trans-1,4-polyisoprene. As a result, the fraction of polymer granules with a diameter of 7.5 μm is formed by 0.7 s of polymerization and replication to high conversions is developed on their basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号