首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
基于LST_LAI特征空间的农田干旱监测研究   总被引:1,自引:0,他引:1  
农田干旱具有范围广且对农业生产影响巨大的特点,对农田干旱的遥感实时动态监测是目前公认的难题。利用MODIS的地表温度(LST)产品和叶面积指数(LAI)产品,构建LST-LAI光谱特征空间,提出温度—叶面积干旱指数(temperature LAI drought index,TLDI)监测农田水分含量,并利用宁夏实测的0~10 cm平均土壤含水量验证该指数的精度,结果表明:它们之间具有良好的相关性,R2的变化范围为0.43~0.86。与TVDI相比,TLDI弥补了作物封垄后TVDI因归一化植被指数(NDVI)饱和对农田水分监测精度降低的缺陷。此外,利用MODIS数据产品LST和LAI进行农田干旱监测,避免了使用MODIS原始数据的繁杂处理过程,初步为MODIS数据产品在农田干旱监测业务化运行探索出一条技术流程。  相似文献   

2.
农业是国家经济发展的基础支柱,同时也是社会发展的基础产业。我国农业遥感技术的进步和发展,大量遥感卫星发射升空,如高分1号、2号和6号等,为我国农情监测、作物长势、农业产业结构调整提供了重要技术支撑。农业遥感成为农业科技创新和精准农业的重要手段。叶面积指数(LAI)是一种可用来衡量植被冠层生理与生化的关键指标,不仅可以用来评估植被冠层表面的最初能量交换情况,提供相应的结构定量数据,还能反映植被冠层的光谱能量信息。同时,在陆地气候变化情况下,叶面积指数是陆地生态系统和土地利用过程生产力模型的关键输入。此外,研究发现植被冠层受人为活动和气候变化的直接或间接影响时,叶面积指数也是陆地生态系统应对气候变化十分重要的衡量标准。因此,针对GF-6 WFV遥感影像叶面积指数反演研究较少和传统光谱植被指数模型机理性、稳定性较弱的问题。基于GF-6 WFV遥感影像以栾城县为试验区,通过光谱植被指数与实测叶面积指数构造5种传统光谱植被指数模型和15种红边参与的光谱植被指数模型反演乳熟期叶面积指数,采用R2和RMSE进行模型评价,同时利用未参与建模的实测叶面积指数和MODIS LAI产品验证模型。实验结果表明:(1)由相关性分析可知,整体上讲,20种光谱植被指数与LAI具有显著相关性,相关系数在0.4以上,且红边参与构造的光谱指数相关性要高于无红边参与构造的光谱指数,其中NDSI的相关性最优;(2)由拟合分析可知,整体上讲,20种光谱植被指数与LAI拟合效果较好,其中NDS13的拟合精度是最高的,R2为0.803,RMSE为0.301 2。(3)由反演的空间分布可知,反演结果符合当地的实际情况。(4)由实测叶面积指数验证模型可知,实测叶面积指数与NDSI3模型反演的LAI整体拟合较好,R2为0.804,RMSE为0.312 5,说明该模型能有效反演乳熟期玉米的生长状况。(5)由MODIS LAI产品验证模型可知,LAIMODIS均值要高于LAIGF-6,这与MODIS影像像元混合严重和空间分辨率低有关。综上所述,GF-6WFV反演叶面积指数能力较强,其影像中红边参与构造的光谱植被指数模型能有效反演乳熟期叶面积指数,为玉米长势监测提供依据。  相似文献   

3.
地表温度(Ts)是土壤湿度和植被生长状态等因素的综合反映,利用植被指数和Ts能够监测土壤湿度的时空分布特征。利用农田气候模型CUPID的Ts模拟结果,发展了利用温度与叶面积指数(LAI)的新型土壤水分反演方法(advanced temperature vegetation dryness index, ATVDI)。前人研究表明归一化植被指数(NDVI)容易达到饱和状态,因此利用LAI代替NDVI开展土壤水分反演。利用CUPID模型模拟结果构建LAI-Ts散点图,分析Ts随LAI与土壤湿度的变化特征,利用对数关系式改进了温度植被干旱指数(TVDI)中相同土壤湿度时Ts与植被指数之间的线性关系,建立了ATVDI方法。在实际应用中,首先利用LAI与Ts的散点图确定对数曲线的上边界与下边界,然后采用查找表的方法将每个像元对应的Ts变换为研究区最小叶面积指数对应的Ts。以陕西省关中作为研究区,利用MODIS的LAI和Ts产品(MOD11A2和MOD15A2)以及野外观测土壤湿度数据对ATVDI模型进行验证,结果表明该方法具有较高的监测精度,R2达到0.62。此外,ATVDI的计算结果具有一定的物理意义,使得不同时期的监测结果具有一致性,因而可更好地满足不同空间尺度土壤湿度的动态监测。  相似文献   

4.
MODIS植被指数监测农业干旱的适宜性评价   总被引:4,自引:0,他引:4  
MODIS传感器提供的短波红外光谱波段为农业干旱遥感监测带来了新的机遇,因为它对植被水分十分敏感。本文选择中国东北松嫩平原为研究区,旱田为农业干旱的监测目标。基于2001—2010年的8天合成MODIS产品(MOD09A1),分别计算了四种基于可见光和近红外光谱的植被绿度指数和四种基于近红外和短波红外光谱的植被水分指数,并以多尺度标准化降水指标(SPI)为判别植被指数农业干旱敏感性的标准,利用一种气象站点与象元配对关联的方法计算了不同植被指数与多尺度SPI的皮尔逊相关系数。研究表明,在农业干旱监测敏感性方面,MODIS植被水分指数(NDII6和NDII7)明显好于植被绿度指数。其中NDII7的表现最为出色,研究证实了MODIS短波红外光谱在监测农业干旱方面的潜力,为今后相关研究提供了新的见解。  相似文献   

5.
叶面积指数(LAI)是目前最常用的农业生态监测指标,可以为农作物的病虫害监测、作物长势监测、碳循环、生物量估算及作物估产提供依据。植被指数(VI)是卫星LAI产品生产的重要数据源,但不同VIs对植被LAI的响应特征具有一定的差异性。以江西省水稻为例,基于实测光谱提取了水稻实测VIs,结合实测LAI,讨论了归一化植被指数(NDVI)、增强型植被指数(EVI)、土壤调节植被指数(SAVI)和修正的土壤调节植被指数(MSAVI)四种常见VIs对LAI的响应特征,并与MODIS LAI备用算法的计算结果进行了对比分析,研究了不同VIs用于LAI产品反演的可行性及存在的问题。通过对不同实测VIs-LAI模型精度的评估,分析其应用于LAI反演的适应性,结果显示EVI,SAVI和MSAVI比NDVI有更好的适应性,其中EVI效果最优。此外,通过对比MODIS LAI备用算法查找表,发现针对MODIS LAI备用算法中草地与谷物作物这一地表覆盖大类,在LAI>4时,NDVI出现饱和;而实测水稻作物的NDVI在LAI>2时开始出现饱和;且当NDVI相同时,查找表LAI远大于实测LAI,MODIS备用算法中使用的地表覆盖产品分类过粗可能是造成这一结果的主要原因。因此MODIS LAI备用算法在该区域水稻LAI监测中可能产生较大误差,有必要改用其他VIs优化该备用算法。通过对比分析四种VIs模型对LAI的预测误差,发现EVI,SAVI和MSAVI精度明显优于NDVI,基于EVI的模型平均预测误差仅为MODIS LAI备用算法的1/6,基于实测NDVI反演算法的1/2,因此设计基于EVI的LAI算法对LAI的反演精度有一定的提升空间。  相似文献   

6.
基于高光谱数据和模型反演植被叶面积指数的进展   总被引:3,自引:0,他引:3  
植被叶面积指数(Leaf Area Index , LAI)是陆面过程中影响陆-气交换的重要参数,也是表征植被冠层结构最基本的参量之一。准确而快速地获取LAI是植被-气候相互作用、植被生态和农作物估产研究不可缺少的工作。本文首先针对LAI和高光谱遥感进行概述,然后从不同平台高光谱传感器数据和不同反演方法两个角度总结了国内外近些年来高光谱遥感LAI的研究进展,最后分析了高光谱遥感反演LAI的未来发展方向。  相似文献   

7.
PROSAIL冠层光谱模型遥感反演区域叶面积指数   总被引:8,自引:0,他引:8  
大面积区域作物叶面积指数遥感反演,对指导作物管理具有非常重要的意义,验证和发展基于物理叶面积指数遥感反演可避免基于经验模型的缺点。以北京地区青云店、魏善庄和高丽营为研究区,采用MODIS和ASTER两类不同空间分辨率遥感数据,探讨PROSAIL物理模型反演冬小麦叶面积指数的可行性,尤其在不同空间分辨率遥感数据上的稳定性,并与经验模型进行了对比分析。 与经验模型相比,物理模型模拟LAI值更具真实性;用线性组分加权的方法,对小尺度物理模型反演LAI进行尺度扩展并与基于大尺度遥感数据的LAI物理反演结果相对比,相差不大,说明LAI物理反演方法在空间尺度上的稳定性。  相似文献   

8.
植被叶面积指数(LAI)时间序列的建模及预测是陆面过程模型和遥感数据同化方法的重要组成部分。MODIS数据产品MOD15A2是目前应用最为广泛的LAI数据源之一,然而MODIS LAI时间序列产品包含了一些低质量的数据,例如由于云层、气溶胶等的影响,该产品在时间和空间上缺乏连续性。MODIS LAI时间序列包含线性部分和外在干扰产生的非线性部分,单一的线性方法或非线性方法都不能对其精确建模和预测。首先利用Savitzky-Golay(SG)滤波和线性插值平滑受到干扰的LAI时间序列,然后采用季节自回归积分滑动平均(SARIMA)方法、BP神经网络方法及二者的组合方法(SARIMA-BP)对MODIS LAI时间序列进行建模及预测。在SARIMA-BP神经网络组合方法中,各自在线性与非线性建模的优势得以充分发挥,其中SARIMA方法用于建模及预测LAI时间序列中的线性部分,BP神经网络方法用于对非线性残差部分进行建模及预测。实验结果显示:SG滤波和线性插值后的LAI时间序列比原LAI时间序列更平滑;SARIMA-BP神经网络组合方法的决定系数为0.981,比SARIMA和BP神经网络的0.941和0.884更接近于1;SARIMA-BP神经网络组合方法的预测值同观测值之间的相关系数为0.991,高于SARIMA(0.971)和BP神经网络(0.942)的相关系数。由此得出结论:SARIMA-BP神经网络组合方法对MODIS LAI时间序列具有更好的适应性,其建模和预测准确性高于SARIMA方法或BP神经网络方法。  相似文献   

9.
冬小麦叶面积指数遥感反演方法比较研究   总被引:5,自引:0,他引:5  
叶面积指数(leaf area index, LAI)是反映作物生长状况和进行产量预测预报的主要指标之一,对诊断作物生长状况具有重要意义。遥感技术为大面积、快速监测植被LAI提供了有效途径。利用高光谱遥感影像,结合田间同步实验数据,探讨不同方法对冬小麦叶面积指数遥感反演的能力。介绍了支持向量机、离散小波变换、连续小波变换和主成分分析四种LAI反演方法。分别利用上述四种方法构建冬小麦LAI反演模型,并对不同算法反演的LAI模型进行了真实性检验。结果显示,支持向量机非线性回归模型精度最高,对冬小麦LAI估算能力最强,反演值与实测值拟合的决定系数为0.823 4、均方根误差为0.419 5。离散小波变换法和主成分分析法都是基于特征提取和数据降维,其多元变量回归分析对LAI估算能力相近,决定系数分别为0.697 1和0.692 4,均方根误差分别为0.605 8和0.554 1。连续小波变换法回归模型精度最低,不适宜直接用其小波系数来反演LAI。结果表明,非线性支持向量机模型最适宜用于研究区域的冬小麦LAI反演。  相似文献   

10.
基于环境星CCD数据的环境植被指数及叶面积指数反演研究   总被引:4,自引:0,他引:4  
利用PROSAIL前向模型模拟的植被冠层光谱,在植被指数构造时,引入修正大气、土壤背景影响的蓝、绿波段,构建了避免过早饱和的环境植被指数(environmental vegetation index,EVI)。基于多个典型冬小麦生育期的地面观测数据,建立基于EVI-LAI长时间序列反演模型,并对模型进行不同品种间的交叉检验。研究表明,EVI建立的叶面积指数(leaf area index,LAI)反演模型精度优于同类植被指数模型,并具有较好的普适性,能应用于冬小麦遥感多时相长势监测及LAI反演。  相似文献   

11.
晚播条件下基于高光谱的小麦叶面积指数估算方法   总被引:1,自引:0,他引:1  
利用高光谱遥感技术,分析晚播条件下小麦叶片与冠层模式光谱特征和叶面积指数(LAI)的变化规律,建立了适用于晚播小麦的叶面积指数估算方法。研究结果表明:(1)从红光和蓝紫光420~663 nm波段提取的叶绿素光谱反射率植被指数(CSRVI)与旗叶SPAD值做相关性分析,结果表明正常播期和晚播处理在叶片模式的相关系数分别为0.963*和0.997**,达显著和极显著水平。(2)利用相关性分析,得出两个播期处理的LAI与SPAD值相关系数分别是0.847*和0.813*,均达到显著水平。SPAD值与LAI及CSRVI指数均具有相关性,可以用CSRVI指数建立LAI的估算模型。(3)对叶片模式和冠层模式光谱曲线特征分析得出,叶片模式中在680~780 nm处的反射率呈现陡升趋势,在可见光波段的446和680 nm和近红外波段的1 440和1 925 nm处各有两个明显的吸收波谷,在540~600,1 660和2 210 nm波段处有两个明显的反射波峰;三种冠层模式中60°模式下的光谱反射率整体表现为最高。(4)将各波段反射率与叶面积指数做相关性分析得出在可见光波段范围内,光谱反射率与LAI总体呈现负相关性,500~600 nm处有一个波峰。(5)将三种冠层模式下(仪器入射角度分别与地面呈30°,60°和90°夹角)的等效植被指数与LAI做相关性分析得出:60°冠层模式下八种植被指数与正常播期LAI的相关性均未达显著水平,比值植被指数(RVI)、归一化植被指数(NDVI)、增强型植被指数(EVI)、再次归一化植被指数(RDVI)、土壤调整植被指数(SAVI)、修改型土壤调整植被指数(MSAVI)的等六种植被指数与晚播条件下的LAI具有显著和极显著相关关系;90°冠层模式下CSRVI指数与正常播期处理的LAI具有显著相关关系,NDVI指数与晚播处理的LAI具有显著相关关系;30°冠层模式下的八种植被指数与两播期处理的LAI的相关性均未达显著水平。综合分析CSRVI指数、NDVI指数的相关性最高,这两种指数最具有估算LAI的潜力。(6)通过三种冠层模式所计算的植被指数估算LAI模型,结果表明,正常播期条件下,其最佳估算模型是90°冠层模式CSRVI指数所建立的线性模型Y=-7.873 6+6.223 8X;晚播条件下的最佳模型是60°冠层模式RDVI指数所建立的幂函数模型Y=30 221 333.33X17.679 1,两个模型的决定系数R2分别为0.950*和0.974**。研究表明试验中所提取的CSRVI指数能够反映旗叶叶绿素含量,可以通过光谱仪器的叶片模式对小麦生育期内叶绿素含量进行监测;通过冠层模式计算的CSRVI指数和RDVI指数所建立的LAI估算模型可以对小麦的LAI进行无损害观察。  相似文献   

12.
荒漠地区由于气候干燥,降水稀少,水分常成为制约植被生长的因素之一,水分胁迫对植物长势和产量的影响比任何其他胁迫都要大。随着高光谱技术的发展,国内外已有众多学者利用高光谱数据研究植被遭受胁迫作用,然而这些研究对象多集中于甜菜、棉花、玉米、水稻等作物,针对干旱区盐生植被遭受胁迫作用的研究较少。梭梭作为荒漠、半荒漠地区的典型盐生植被之一,具有极高的经济和生态效益。选择梭梭作为研究对象,培育一年生梭梭,并设置三个水分梯度,形成受不同水分量胁迫的梭梭。使用原始光谱、红边位置参数,结合植被指数及二维相关光谱研究其叶片光谱特征,为干旱区利用高光谱遥感监测盐生植被提供借鉴。结果表明:(1)分析梭梭叶片反射光谱曲线发现,在可见光至中红外各波段范围内,受不同水分量胁迫作用的梭梭叶片光谱反射率有显著差异。在可见光(350~610 nm)波段,各水分处理的梭梭叶片反射率依次为100 mL>500 mL>200 mL,这是由于100和200 mL水分促进梭梭内部叶绿素合成,使该波段反射率降低,而过多的水分(500 mL)对梭梭内部的叶绿素合成没有更大的促进作用。在红光区(611~738 nm),随着水分量的增多,受不同水分量胁迫的梭梭叶片光谱反射率依次减小。在738~1 181和1 228~1 296 nm波段,受不同水分量胁迫作用的梭梭叶片光谱反射率为:200 mL>100 mL>500 mL;在1 182~1 227 nm波段,受不同水分量胁迫作用的梭梭叶片光谱反射率为:100 mL>200 mL>500 mL。这是由于植被细胞结构对近红外区域的反射率影响较大,因而受不同水分胁迫作用的梭梭叶片光谱反射率有显著差异。在1 300~1 365和1 392~1 800 nm波段,受各水分胁迫作用的梭梭叶片反射率为:100 mL>200 mL>500 mL。这表明在500 mL水分胁迫量范围内,水分越多,叶子的细胞液、细胞膜对水分的吸收能力越强,使得反射率下降。通过对原始光谱求取一阶导数并提取红边位置参数发现,各水分处理下的梭梭叶片一阶微分光谱曲线中红边位置未发生移动。这是由于梭梭在长期的干旱环境影响下,形成了特殊的适应机制,水分对其红边位置影响不敏感。(2)选取若干植被指数分析各水分处理下的梭梭光谱指数变化。当水分胁迫量由100 mL增至200 mL时,WI/NDWI,MSI和NDII指数值变化显著,可用于研究水分胁迫下梭梭的光谱特征。(3)使用二维相关光谱技术分析受各水分胁迫作用的梭梭光谱特征,得出在100 mL水分胁迫下,在536,643,1 219和1 653 nm波段处,吸收峰对水分的微扰敏感;在200 mL水分胁迫下,在846和1 083 nm波段处,吸收峰对水分的微扰敏感;在500 mL水分胁迫下,在835和1 067 nm波段处,吸收峰对水分的微扰敏感。总之,在近红外波段,与100 mL水分量相比,梭梭受200和500 mL水分量胁迫时,吸收峰对水分的微扰敏感度上升。由100 mL水分胁迫下梭梭的二维同步相关谱图可知,1 044和1 665 nm,1 072和903 nm,903和1 264 nm,1 230和1 061 nm波段处形成正交叉峰,表明这些波段处光谱强度随水分的干扰同时变化。  相似文献   

13.
冬小麦不同生育时期叶面积指数反演方法   总被引:20,自引:0,他引:20  
针对当前作物叶面积指数遥感反演过程中,在不同生育时期采用相同的植被指数进行反演存在叶面积指数反演精度较低的问题。以冬小麦为研究对象,选取了对冬小麦覆盖度响应程度不同的六种宽带和四种窄带共10种植被指数,分析比较了在冬小麦整个生育期选用当前广泛使用的归一化植被指数(NDVI)反演冬小麦的LAI和在冬小麦不同生长阶段选用不同的植被指数反演冬小麦LAI的结果差异。在冬小麦整个生育期内使用NDVI反演小麦LAI得到的LAI反演值和真实值之间的R2=0.558 5,RMSE=0.320 9。改进的比值植被指数(mSR)适合于反演冬小麦生长前期(拔节期之前)的LAI,得到的LAI反演值和真实值之间的相关系数r=0.728 7,均方根误差RMSE=0.297 1;比值植被指数(SR)适于反演冬小麦生长中期(拔节到抽穗前),得到的LAI反演值和真实值之间的R2=0.654 6,RMSE=0.306 1;NDVI适于反演冬小麦生长后期(抽穗到成熟期)的LAI,得到的LAI反演值和真实值之间的R2=0.679 4,均方根误差RMSE=0.316 4。 研究表明:在冬小麦的不同生育时期,根据地表作物覆盖度的变化和反射率的变化,选择不同的植被指数建立冬小麦LAI的反演模型获得的反演精度均高于在冬小麦整个生育期使用NDVI获得的反演结果。说明在冬小麦的不同生育时期选择不同的植被指数构建LAI的分段反演模型可以改善冬小麦LAI的反演精度。  相似文献   

14.
Crop water stress significantly reduces crop yield. Several studies have employed optical and remote-sensing methods to obtain nondamage monitoring crop water content to understand the agriculture drought process. In this paper, the spectral information (i.e., the canopy absorption feature at the 350–2500 nm band range) from the field experiments was used to estimate and identify the canopy water stress. Five different levels of water treatments exist in the spring wheat field in the semiarid regions of Loess Plateau, Northwest China. The hyperspectral reflectance, soil moisture content, soil water potential, canopy water content, amount of chlorophyll, leaf area index, and environmental parameters were measured. The relationship between canopy reflectance and canopy water content was analyzed at different water stress levels. In addition, various spectral indices were tested by measurements. Results showed that a high correlation exists in semiarid water index-1, semiarid water index-2, and red-edge normalized difference vegetation index, thus denoting that these indices can indicate water stress effectively. We can conclude that canopy reflectance can identify crop water stress and can be used to develop a certain index for monitoring agriculture drought.  相似文献   

15.
光谱指数的植被叶片含水量反演   总被引:1,自引:0,他引:1  
利用光谱技术监测植被水分状况是了解植被生理状况及生长趋势的重要手段之一。选择艾比湖湿地自然保护区作为靶区。采用聚类分析、变量投影重要性分析(VIP)以及敏感性分析等方法,对植被不同含水量进行分级,并针对不同等级的植被含水量进行估算及验证。结果表明: (1)基于聚类分析中的欧氏距离的方法将植被叶片相对含水量划分为高等、中等、低等三个等级,其范围分别为70.76%~80.69%,53.27%~70.76%,31.00%~53.27%。在中红外与远红外(1 350~2 500 nm)之间,反射率越低植被含水量越高;波长380~1 350 nm范围,无此现象。(2)应用VIP方法可知,所选的8种植被水分指数VIP值均超过了0.8,说明植被水分指数预测能力均较强且差别不显著。其中MSI,GVMI与植被叶片相对含水量的非线性三次拟合函数效果最佳,MSI决定系数R2为0.6575和GVMI决定系数R2为0.674 2。植被叶片相对含水量在30%~45%范围,MSI指数的NE值最低,在45%~90%范围时,GVMI指数的NE值最低。NDWI1240指数的NE值在70%左右起伏较大,说明NDWI1240 指数在植被含水量为70%左右,预测能力较差。(3)通过误差分析可知GVMI指数反演的结果误差最小,不同的植被指数对不同含水量的植被估算结果相差较为明显,因此分段估算植被含水量是有必要的。综上所述,利用高光谱遥感技术对监测艾比湖保护区植被生长及干旱环境提供基础研究。  相似文献   

16.
基于CASI高光谱数据的作物叶面积指数估算   总被引:3,自引:0,他引:3  
叶面积指数(LAI)的快速估算对于及时了解作物长势、病虫害监测以及产量评估具有重要意义。利用2012年7月7日在黑河流域张掖市获取的CASI高光谱数据,精确提取出了不同作物的光谱反射率,同时结合地面实测数据,对比分析了宽波段和“红边”植被指数在估算作物LAI方面的潜力,在此基础上,基于波段组合算法,筛选出作物LAI估算的敏感波段,并构建了两个新型光谱指数NDSI和RSI,最后对研究区域作物LAI的空间分布进行了分析。结果表明,在植被覆盖度较低的情况下,宽波段植被指数NDVI对LAI具有较好的估算效果,模型的精度R2与RMSE分别为0.52,0.45(p<0.01);对于“红边”植被指数,由于CIred edge充分考虑了不同的作物类型,其对LAI的估算精度与NDVI一致;利用波段组合算法构建的光谱指数NDSI(569.00, 654.80)和RSI(597.6, 654.80)对LAI估算的效果要优于NDVI与CIred edge,其中,NDSI(569.00, 654.80)主要利用了植被光谱“绿峰”和“红谷”附近的波段,模型估算的精度R2可达0.77(p<0.000 1);根据LAI与NDSI(569.00, 654.80)之间的函数关系,绘制作物LAI的空间分布图,经分析,研究区域的西北部LAI值偏低,需增施肥料。研究结果,可为农业管理部门及时掌握作物长势信息、制定施肥策略提供技术支持。  相似文献   

17.
基于SVM与RF的苹果树冠LAI高光谱估测   总被引:7,自引:0,他引:7  
叶面积指数(leaf area index,LAI)是反映作物群体大小的较好的动态指标。运用高光谱技术快速、无损地估测苹果树冠叶面积指数,为监测苹果树长势和估产提供参考。以盛果期红富士苹果树为研究对象,采用ASD地物光谱仪和LAI-2200冠层分析仪,在山东省烟台栖霞研究区,连续2年测量了30个果园90棵苹果树冠层光谱反射率及LAI值;通过相关性分析方法构建并筛选出了最优的植被指数;利用支持向量机(support vector machine, SVM)与随机森林(random forests, RF)多元回归分析方法构建了LAI估测模型。新建的GNDVI527,NDVI676,RVI682,FD-NVI656和GRVI517五个植被指数及前人建立的两个植被指数NDVI670和NDVI705与LAI的相关性都达到了极显著水平;建立的RF回归模型中,校正集决定系数C-R2和验证集决定系数V-R2为0.920,0.889,分别比SVM回归模型提高了0.045和0.033,校正集均方根误差C-RMSE、验证集均方根误差V-RMSE为0.249,0.236,分别比SVM回归模型降低了0.054和0.058, 校正集相对分析误C-RPD、验证集相对分析误V-RPD达到了3.363和2.520,分别比SVM回归模型提高了0.598和0.262,校正集及验证集的实测值与预测值散点图趋势线的斜率C-SV-S都接近于1,RF回归模型的估测效果优于SVM。RF多元回归模型适合盛果期红富士苹果树LAI的估测。  相似文献   

18.
光谱指数的植物叶片叶绿素含量估算模型   总被引:4,自引:0,他引:4  
叶片叶绿素能够有效监测植被的生长状况,利用光谱指数反演植被叶绿素含量是目前的通用方法。实测了盐生植物光谱反射率和叶片叶绿素含量。对SPAD值进行变换,对比Pearson与VIP方法探讨盐生植被叶片叶绿素含量与植被指数的相关性并进行精度验证,从中选出最佳拟合模型。研究表明,通过对Pearson与VIP相关性分析,最终选定VIP方法建立植被指数的叶片叶绿素估算模型,NDVI705,ARVI,CIred edge,PRI,VARI,PSRI和NPCI的VIP值均大于0.8,因此选定这七个植被指数为最优植被指数;预测结果显示,所有模型的相关性都在0.7以上,预测值与实测值相关性最好的是经过倒数变换的SPAD值,R=0.816,RMSE=0.007。基于VIP方法的反演模型能较好地估算研究区植被叶绿素含量,该方法为植物叶绿素含量诊断的实际应用提供了重要的理论依据和技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号