首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A series of ordered perovskite oxides of the type Ln2+0.75B6+0.25O3 (Ln = rate earth or Y; B = Mn, Fe, Co, Ni; B′ = Mo, W, Re) has been synthesized and characterized by X-ray analysis and density measurements. Compounds with Ln = La are easily formed in all cases as single-phase materials and have either cubic or orthorhombic symmetry. When Ln = rare earth or Y, single-phase materials are formed only in the case of LnFe0.75Mo0.25O3 and these possess an orthorhombic structure. All the phases tested are extrinsic semiconductors in the range of 25–350°C, with Ea ranging from 0.1 to 0.4 eV. Resistivity of the Ln(Fe, Mo)O3 series of oxides increases from Ln = La to Ln = Lu. Ni-containing compounds are p type, while those containing Fe or Co in the B sites are n type.  相似文献   

2.
The heat capacities of eight chlorine boracites T3B7O13Cl (T=Cr, Mn, Fe, Co, Ni, Cu, Zn or Mg) have been measured in the temperature range 2 to 100 K. Magnetic phase transitions occur below 20 K in the compounds studied except in the two non-magnetic substances Zn3B7O13Cl and Mg3B7O13Cl. The magnetic specific heat capacities give information on magnetic ground state of the transition metals and the entropy related to the phase transitions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Ternary system: H2O–Fe(NO3)3–Co(NO3)2 isotherm: 30 °C. The H2O–Co(NO3)2 binary system has been investigated in the –28 to 50 °C temperature range. The solid–liquid equilibria of the ternary system H2O–Fe(NO3)3–Co(NO3)2 were studied by using a synthetic method based on conductivity measurements. One isotherm is established at 30 °C, and the stable solid phases that appear are iron nitrate nonahydrate: Fe(NO3)3·9 H2O, iron nitrate hexahydrate: Fe(NO3)3·6 H2O, cobalt nitrate hexahydrate: Co(NO3)2·6 H2O, and cobalt nitrate trihydrate: Co(NO3)2·3 H2O. To cite this article: B. El Goundali et M. Kaddami, C. R. Chimie 9 (2006).  相似文献   

4.
In the B2O3? MO? MS (M = Mg, Mn, Fe, Co, Zn, Cd) systems six ternary phases have been isolated, four of them having the structure of the cubic variety of the boracite, Mg3B7O13Cl, and two the structure of the sodalite, Na4(SiAlO4)3Cl. Some properties of the new phases have been investigated.  相似文献   

5.
Na6B13O22.5 (B/Na=2.17) single crystals were obtained by heating, melting and appropriately cooling borax, Na2[B4O5(OH)4]·8H2O. Its formula has been determined by the resolution of the structure from single-crystal X-ray diffraction data. The compound crystallizes in the noncentrosymmetric orthorhombic Iba2 space group, with the following unit cell parameters: a=33.359(11) Å, b=9.554(3) Å, c=10.644(4) Å; V=3392.4(19) Å3; Z=8. The crystal structure was solved from 3226 reflections until R1=0.0385. It exhibits a three-dimensional framework built up from BO3 triangles (Δ) and BO4 tetrahedra (T). Two kinds of borate groups can be considered forming two different double B3O3 rings: two B4O9 (linkage by two boron atoms) and one B5O11 (linkage by one boron atom); the shorthand notation of the new fundamental building block (FBB) existing in this compound is: 13: ∞3 [(5: 3Δ+2T)+2(4: 2Δ+2T)]. The discovery of this new borate questions the real number of Na2B4O7 varieties. The existence of Na6B13O22.5 (B/Na=2.17) and of another recently discovered borate, Na3B7O12 (B/Na=2.33; FBB 7: ∞3 [(3: 2Δ+T)+(3: Δ+2T)+(1: Δ)], with a composition close to the long-known borate α-Na2B4O7 (B/Na=2; FBB 8: ∞3 [(5: 3Δ+2T)+(3: 2Δ+T)], may explain the very complex equilibria reported in the Na2O-B2O3 phase diagram, especially in this range of composition.  相似文献   

6.
The crystal and magnetic structures of Sr4MMn2O9 (M=Cu, Zn) have been refined from neutron powder diffraction data. These trigonal compounds (space group P321, a=9.5918(1), c=7.8114(1) Å (Cu); a=9.5894(1), c=7.5039(1) Å (Zn)) are n=3 members of the series A3n+3MnBn+3O6n+9, with each unit cell containing three offset [001] polyhedral chains, each of which ideally contains a 1:1 ratio of B2O9 units and MO6 trigonal prisms. In fact anti-site disorder between Mn and M is observed, and for M=Cu the cations are disordered off the center of the prism towards a rectangular face. Both compositions show 3D anti-ferromagnetic order at 1.6 K, with an ordered magnetic moment of 1.91(6) (M=Cu) or 1.8(1) (M=Zn) μB per Mn. No ordered magnetic moment was detected on the trigonal prismatic site in either compound, consistent with the observed temperature dependence of the magnetic susceptibility.  相似文献   

7.
Subsolidus phase relations have been determined for the Bi2O3-Fe2O3-Nb2O5 system in air (900-1075 °C). Three new ternary phases were observed—Bi3Fe0.5Nb1.5O9 with an Aurivillius-type structure, and two phases with approximate stoichiometries Bi17Fe2Nb31O106 and Bi17Fe3Nb30O105 that appear to be structurally related to Bi8Nb18O57. The fourth ternary phase found in this system is pyrochlore (A2B2O6O′), which forms an extensive solid solution region at Bi-deficient stoichiometries (relative to Bi2FeNbO7) suggesting that ≈4-15% of the A-sites are occupied by Fe3+. X-ray powder diffraction data confirmed that all Bi-Fe-Nb-O pyrochlores form with positional displacements, as found for analogous pyrochlores with Zn, Mn, or Co instead of Fe. A structural refinement of the pyrochlore 0.4400:0.2700:0.2900 Bi2O3:Fe2O3:Nb2O5 using neutron powder diffraction data is reported with the A cations displaced (0.43 Å) to 96g sites and O′ displaced (0.29 Å) to 32e sites (Bi1.721Fe0.190(Fe0.866Nb1.134)O7, Fdm (#227), ). This displacive model is somewhat different from that reported for Bi1.5Zn0.92Nb1.5O6.92, which exhibits twice the concentration of small B-type cations on the A-sites as the Fe system. Bi-Fe-Nb-O pyrochlores exhibited overall paramagnetic behavior with large negative Curie-Weiss temperature intercepts, slight superparamagnetic effects, and depressed observed moments compared to high-spin, spin-only values. The single-phase pyrochlore with composition Bi1.657Fe1.092Nb1.150O7 exhibited low-temperature dielectric relaxation similar to that observed for Bi1.5Zn0.92Nb1.5O6.92; at 1 MHz and 200 K the relative permittivity was 125, and above 350 K conductive effects were observed.  相似文献   

8.
Single crystals of iron(II) pyroborate, Fe2B2O5, were prepared at 1000–1050 °C under an argon atmosphere. The crystals were transparent, yellowish in color and needle-like or columnar. The crystal structure of Fe2B2O5 was analyzed by single-crystal X-ray diffraction. Refined triclinic unit cell parameters were a=3.2388(2), b=6.1684(5), c=9.3866(8) Å, α=104.613(3)°, β=90.799(2)° and γ=91.731(2)°. The final reliability factors of refinement were R1=0.020 and wR2=0.059 [I > 2σ(I)]. Transmittance over 50% in the visible light region from 500 to 750 nm was observed for a single crystal of Fe2B2O5 with a thickness of about 0.3 mm. The light absorption edge estimated from a diffuse reflectance spectrum was at around 350 nm (3.6 eV). Magnetic susceptibility was measured for single crystals at 4–300 K. Fe2B2O5 showed antiferromagnetic behavior below the Néel temperature, TN≈70 K, and the Weiss temperature was TW=36 K. The effective magnetic moment of Fe was 5.3μB.  相似文献   

9.
A series of metalloborophosphates Na2[MIIB3P2O11(OH)]·0.67H2O (MII=Mg, Mn, Fe, Co, Ni, Cu, Zn) have been prepared hydrothermally and their structures have been solved by single-crystal diffraction techniques. They all crystallize in a hexagonal space group P63 and form a 3D microporous structure with 12-membered ring channels consisted of octahedral (MIIO6), tetrahedral (BO4, PO4) and triangular (BO2(OH)) units, in which the counter Na+ cations and water molecules are located. The Na+ cations are mobile and can be exchanged by Li+ in a melt of LiNO3. Their open frameworks are thermal stable up to about 500 °C. Completed solid solutions between two different transition metals can also be obtained. Magnetic properties of Na2[MIIB3P2O11(OH)]·0.67H2O (MII=Mn, Co, Ni, Cu) have been investigated.  相似文献   

10.
First-principles, density-functional studies of several intermetallic borides of the general type M2M′Ru5−nRhnB2 (n=0-5; M=Sc, Ti, Nb; M′=Fe, Co) show that the variation in saturation magnetic moment with valence-electron count follows a Slater-Pauling curve, with a maximum moment occurring typically at 66 valence electrons. The magnetic moments in these compounds occur primarily from the 3d electrons of the magnetically active M′ sites, with some contribution from the Ru/Rh sites via magnetic polarization. Electronic DOS curves reveal that a rigid-band approach is a reasonable approximation for the estimation of saturation moments and the analysis of orbital interactions in this family of complex borides. COHP analyses of the M′−M′ orbital interactions indicate optimized interactions in the minority spin states for Co-containing phases, but strong bonding interactions remaining in Fe-containing phases.  相似文献   

11.
The synthesis, structure, and physical properties of five R-type Ru ferrites with chemical formula BaMRu5O11 (M=Li and Cu) and BaM2Ru4O11 (M′=Mn, Fe and Co) are reported. All the ferrites crystallize in space group P63/mmc and consist of layers of edge sharing octahedra interconnected by pairs of face sharing octahedra and isolated trigonal bipyramids. For M=Li and Cu, the ferrites are paramagnetic metals with the M atoms found on the trigonal bipyramid sites exclusively. For M′=Mn, Fe and Co, the ferrites are soft ferromagnetic metals. For M′=Mn, the Mn atoms are mixed randomly with Ru atoms on different sites. The magnetic structure for BaMn2Ru4O11 is reported.  相似文献   

12.
The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of trace elements in Al2O3 powders is reported. Special interest is given to a preconcentration of the trace elements by on-line coupling of chromatography to ICP-MS. This is based on the complexation of Co, Cu, Cr, Fe, Ga, Mn, Ni, V and Zn with hexamethylene-dithiocarbamate (HMDC), their preconcentration on a C18 RP column by reversed phase liquid chromatography and their elution with CH3OH-H2O mixtures. A direct coupling of the HPLC system to the ICP-MS has been realized by high pressure pneumatic nebulization using desolvation. With the Chromatographie method developed, removal of the AI by at least 99% was achieved. For the trace elements V, Fe, Ni, Co, Cu and Ga, high and reproducible recoveries (ranging from 96–99%) were reached. The method developed has been shown to considerably enhance the power of detection as compared with direct procedures, namely down to 0.02–0.16 ( for V and Fe, respectively. The possibilities of the method are shown by the determinations of V, Mn, Fe, Ni, Co, Cu, Zn and Ga at the μg/g level in A12O3 powders. The accuracy of the method at the 0.06 to 9.0 level for Co and Fe, respectively, is demonstrated by a comparison with results of independent methods from the literature.  相似文献   

13.
Fe2O3/SiO2 nanocomposites based on fumed silica A-300 (SBET = 337 m2/g) with iron oxide deposits at different content were synthesized using Fe(III) acetylacetonate (Fe(acac)3) dissolved in isopropyl alcohol or carbon tetrachloride for impregnation of the nanosilica powder at different amounts of Fe(acac)3 then oxidized in air at 400–900 °C. Samples with Fe(acac)3 adsorbed onto nanosilica and samples with Fe2O3/SiO2 including 6–17 wt% of Fe2O3 were investigated using XRD, XPS, TG/DTA, TPD MS, FTIR, AFM, nitrogen adsorption, Mössbauer spectroscopy, and quantum chemistry methods. The structural characteristics and phase composition of Fe2O3 deposits depend on reaction conditions, solvent type, content of grafted iron oxide, and post-reaction treatments. The iron oxide deposits on A-300 (impregnated by the Fe(acac)3 solution in isopropanol) treated at 500–600 °C include several phases characterized by different nanoparticle size distributions; however, in the case of impregnation of A-300 by the Fe(acac)3 solution in carbon tetrachloride only α-Fe2O3 phase is formed in addition to amorphous Fe2O3. The Fe2O3/SiO2 materials remain loose (similar to the A-300 matrix) at the bulk density of 0.12–0.15 g/cm3 and SBET = 265–310 m2/g.  相似文献   

14.
A new structural family, (A2M6O13)n·AM4O9, was isolated and studied by means of X-ray diffraction, electron diffraction, and electron microscopy. The structure consists of an ordered intergrowth of two types of structural units: A2Ti6O13 and hypothetical AM4O9, both characterized by zigzag ribbons of, respectively, 2 × 3 and 2 × 2 edge-sharing octahedra, joined by corner sharing to form a series of open tunnels containing A and A′ cations. The monoclinic unit-cell parameters can be deduced, for an “n” term, from those of A2Ti6O13.  相似文献   

15.
Phase relations at 1500°C in the ternary system ZrO2–Gd2O3–TiO2 have been determined by the powder X-ray diffraction of samples prepared by standard solid state reaction. A large area of this ternary oxide system centered on the Gd2Ti2O7–Gd2Zr2O7 join was shown to exhibit the pyrochlore and defect fluorite structures. The pyrochlore structure was observed for stoichiometries as far from the ideal M4O7 as M4O6.7 and M4O7.4, although the degree of disorder seemed much higher at these stoichiometries. On further deviation from the ideal M4O7 stoichiometry a smooth transition to fluorite average structure was observed for Zr-rich compositions. None of the other binary phases were observed to show significant extent of solid solution into the ternary region.  相似文献   

16.
Monodispersed cobalt nanoparticles (NPs) with controllable size (8–14 nm) have been synthesized using thermal decomposition of dicobaltoctacarbonyl in organic solvent. The as-synthesized high magnetic moment (125 emu/g) Co NPs are dispersible in various organic solvents, and can be easily transferred into aqueous phase by surface modification using phospholipids. However, the modified hydrophilic Co NPs are not stable as they are quickly oxidized, agglomerated in buffer. Co NPs are stabilized by coating the MFe2O4 (M=Fe, Mn) ferrite shell. Core/shell structured bimagnetic Co/MFe2O4 nanocomposites are prepared with tunable shell thickness (1–5 nm). The Co/MFe2O4 nanocomposites retain the high magnetic moment density from the Co core, while gaining chemical and magnetic stability from the ferrite shell. Compared to Co NPs, the nanocomposites show much enhanced stability in buffer solution at elevated temperatures, making them promising for biomedical applications.  相似文献   

17.
The B–O–B bond angle distributions for both ring and non-ring boron sites in vitreous B2O3 have been determined by 11B double rotation (DOR) NMR and multiple-quantum (MQ) DOR NMR. The [B3O6] boroxol rings are observed to have a mean internal B–O–B angle of 120.0±0.7° with a small standard deviation, σR=3.2±0.4°, indicating that the rings are near-perfect planar, hexagonal structures. The rings are linked predominantly by non-ring [BO3] units, which share oxygens with the boroxol ring, with a mean Bring–O–Bnon-ring angle of 135.1±0.6° and σNR=6.7±0.4°. In addition, the fraction of boron atoms, f, which reside in the boroxol rings has been measured for this sample as f=0.73±0.01.  相似文献   

18.
Subsolidus phase relations have been determined for the Bi-Mn-Nb-O system in air (750-900 °C). Phases containing Mn2+, Mn3+, and Mn4+ were all observed. Ternary compound formation was limited to pyrochlore (A2B2O6O′), which formed a substantial solid solution region at Bi-deficient stoichiometries (relative to Bi2(Mn,Nb)2O7) suggesting that ≈14-30% of the A-sites are occupied by Mn (likely Mn2+). X-ray powder diffraction data confirmed that all Bi-Mn-Nb-O pyrochlores form with structural displacements, as found for the analogous pyrochlores with Mn replaced by Zn, Fe, or Co. A structural refinement of the pyrochlore 0.4000:0.3000:0.3000 Bi2O3:Mn2Ox:Nb2O5 using neutron powder diffraction data is reported with the A and O′ atoms displaced (0.36 and 0.33 Å, respectively) from ideal positions to 96g sites, and with Mn2+ on A-sites and Mn3+ on B-sites (Bi1.6Mn2+0.4(Mn3+0.8Nb1.2)O7, (?227), a=10.478(1) Å); evidence of A or O′ vacancies was not found. The displacive disorder is crystallographically analogous to that reported for Bi1.5Zn0.92Nb1.5O6.92, which has a similar concentration of small B-type ions on the A-sites. EELS spectra for this pyrochlore were consistent with an Mn oxidation between 2+ and 3+. Bi-Mn-Nb-O pyrochlores exhibited overall paramagnetic behavior with negative Curie-Weiss temperature intercepts, slight superparamagnetic effects, and depressed observed moments compared to high-spin, spin-only values. At 300 K and 1 MHz the relative dielectric permittivity of Bi1.600Mn1.200Nb1.200O7 was ≈128 with tan δ=0.05; however, at lower frequencies the sample was conductive which is consistent with the presence of mixed-valent Mn. Low-temperature dielectric relaxation such as that observed for Bi1.5Zn0.92Nb1.5O6.92 and other bismuth-based pyrochlores was not observed. Bi-Mn-Nb-O pyrochlores were readily obtained as single crystals and also as textured thin films using pulsed laser deposition.  相似文献   

19.
In this work we report about a new rare-earth oxoborate β-Dy2B4O9 synthesized under high-pressure/high-temperature conditions from Dy2O3 and boron oxide B2O3 in a B2O3/Na2O2 flux with a walker-type multianvil apparatus at 8 GPa and 1000°C. Single crystal X-ray structure determination of β-Dy2B4O9 revealed: , a=616.2(1) pm, b=642.8(1) pm, c=748.5(1) pm, α=102.54(1)°, β=97.08(1)°, γ=102.45(1)°, Z=2, R1=0.0151, wR2=0.0475 (all data). The compound exhibits a new structure type which is built up from bands of linked BO3- (Δ) and tetrahedral BO4-groups (□). The Dy3+-cations are positioned in the voids between the bands. According to the conception of fundamental building blocks β-Dy2B4O9 can be classified with the notation 2Δ6□:Δ3□=4□=3□Δ. Furthermore we report about temperature-resolved in situ powder diffraction measurements and IR-spectroscopic investigations on β-Dy2B4O9.  相似文献   

20.
In the Sc2O3---Ga2O3---CuO, Sc2O3---Ga2O3---ZnO, and Sc2O3---Al2O3---CuO systems, ScGaCuO4, ScGaZnO4, and ScAlCuO4 with the YbFe2O4-type structure and Sc2Ga2CuO7 with the Yb2Fe3O7-type structure were obtained. In the In2O3---A2O3---BO systems (A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, or Zn), InGaFeO4, InGaNiO4, and InFe3+MgO4 with the spinel structure, InGaZnO4, InGaMgO4, and InAlCuO4 with the YbFe2O4-type structure, and In2Ga2MnO7 and In2Ga2ZnO7 with the Yb2Fe3O7-type structure were obtained. InGaMnO4 and InFe2O4 had both the YbFe2O4-type and spinel-type structures. The revised classification for the crystal structures of AB2O4 compounds is presented, based upon the coordination numbers of constituent A and B cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号