首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Attractors of a rotating viscoelastic beam   总被引:1,自引:0,他引:1  
We investigate the non-linear oscillations of a rotating viscoelastic beam with variable pitch angle. The governing equations of motion are two coupled partial differential equations for the longitudinal and transversal displacements. Using a perturbation technique and Galerkin's projection, we reduce the equations of motion to a non-autonomous ordinary differential equation. Our regular perturbation technique is based on the expansion of longitudinal displacement and the amplitude of first transversal mode in terms of a small parameter. We numerically generate the Poincaré maps of the reduced equations and reveal that the system exhibits regular and chaotic attractors. The regular attractors are stable limit-cycles that are relevant to stable, short-period oscillations of the beam. A bifurcation analysis has also been performed when the pitch angle is constant.  相似文献   

2.
具有非轴对称刚度转轴的分岔   总被引:8,自引:0,他引:8  
肖锡武  徐鉴  李誉  杨叔子 《力学学报》2000,32(3):360-366
研究具有非轴对称刚度转轴的1/2亚谐共振和分岔,首先用Hamilton原理导出运动微分方程,这是刚度系数周期性变化的参数激励方程,然后用多尺度法求得平均方程分岔响应方程和定常解,最后用奇异性理论分析分岔响应方程和定常解的稳定性,得到了局部分岔集和不同区域的不同分岔响应曲线。  相似文献   

3.
陈思佳  章定国 《力学学报》2011,43(4):790-794
对在平面内做大范围转动的中心刚体-变截面梁系统的动力学进行了研究.考虑柔性梁横向弯曲变形和纵向伸长变形, 且在纵向位移中计及由于横向变形而引起的纵向缩短项, 即非线性耦合变形项. 采用假设模态法描述变形, 运用第二类Lagrange方程推导得到系统刚柔耦合动力学方程. 在此基础上对做大范围旋转运动的中心刚体-楔形梁以及中心刚体-梯形梁模型的动力学进行了详细研究. 研究表明: 梁宽比、梁高比以及梯形梁变截面位置都对系统的动力学特性有很大影响.   相似文献   

4.
运用柔性多体系统刚柔耦合动力学理论,研究了作大范围回转运动柔性梁的碰撞动力学问题.考虑柔性梁的横向变形,以及横向变形引起的纵向缩短项即非线性耦合变形项.采用基于Hertz接触理论及非线性阻尼理论的非线性弹簧阻尼模型来求解碰撞过程中产生的碰撞力,运用第二类拉格朗日方程建立了系统的刚柔耦合碰撞动力学方程.编制仿真软件进行动力学仿真计算,得到了碰撞力和系统动力学响应,对比分析了不同动力学模型对系统动力学响应的影响.同时研究了碰撞导致的柔性梁横向变形传播的波动特性.  相似文献   

5.
研究了4自由度不平衡弹性转子在非线性油膜力、非线性内阻力和非线性弹性力联合作用下的动力学特性。结果表明,当只有非线性油膜力作用时,转子只存在由于油膜失稳而导致的倍周期分岔。而当非线性油膜力与非线性内阻力共同作用时,在油膜失稳后,转子产生低频振动。转速继续增加,还会诱发内阻失稳,产生概周期运动。在倍周期分岔中,存在分岔激变现象。本文发现的由于油膜涡动而导致的内阻失稳(概周期运动)是一种未见报道的转子失稳模式(组合失稳),它与油膜失稳(倍周期运动)一起可作为转子故障诊断的典型失稳模式。  相似文献   

6.
This paper deals with the three-dimensional dynamics and postbuckling behavior of flexible supported pipes conveying fluid, considering flow velocities lower and higher than the critical value at which the buckling instability occurs. In the case of low flow velocity, the pipe is stable with a straight equilibrium position and the dynamics of the system can be examined using linear theory. When the flow velocity is beyond the critical value, any motions of the pipe could be around the postbuckling configuration (non-zero equilibrium position) rather than the straight equilibrium position, so nonlinear theory is required. The nonlinear equations of perturbed motions around the postbuckling configuration are derived and solved with the aid of Galerkin discretization. It is found, for a given flow velocity, that the first-mode frequency for in-plane motions is quite different from that for out-of-plane motions. However, the second- or third-mode frequencies for in-plane motions are approximately equal to their counterparts for out-of-plane motions, keeping almost constant values with increasing flow velocity. Moreover, the orientation angle of the postbuckling configuration plane for a buckled pipe can be significantly affected by initial conditions, displaying new features which have not been observed in the same pipe system factitiously supposed to deform in a single plane.  相似文献   

7.
The contribution of both longitudinal and transversal nonlinear oscillations to energy localization is investigated in a zigzag molecular chain, which include simultaneously nearest- and next-nearest neighbor interactions. Coupled amplitude equations are found in the form of discrete nonlinear Schrödinger equations, whose plane wave solutions are found to be subjected to some instabilities. They are shown to be very sensitive to transverse and longitudinal couplings, which is confirmed via direct numerical simulations. The two available modes are found to be alternatively responsible for energy localization and transport. Thermal fluctuations effects bring about highly localized modes, along with narrow structures for efficient energy transport.  相似文献   

8.
为了探究轮对系统的横向失稳问题,考虑了陀螺效应和一系悬挂阻尼的影响作用,建立非线性轮轨接触关系的轮对动力学模型,研究轮对系统的蛇行稳定性、Hopf分岔特性及迁移转化机理.通过稳定性判据获得了轮对系统失稳临界速度.采用中心流形定理和规范型方法对轮对动力学模型进行化简,得到与轮对系统分岔特性相同的一维复变量方程,理论推导求得轮对系统的第一Lyapunov系数的表达式,根据其符号即可判断轮对系统的Hopf分岔类型.讨论了不同参数对轮对系统Hopf分岔临界速度的影响,探究了轮对系统的超临界、亚临界Hopf分岔域在二维参数空间的分布规律.利用数值模拟得到轮对系统的3种典型Hopf分岔图,验证了轮对系统超临界、亚临界Hopf分岔域分布规律的正确性.结果表明,轮对系统的临界速度随着等效锥度的增大而减小,随着一系悬挂的纵向刚度和纵向阻尼的增大而增大,随着纵向蠕滑系数的增大呈先增大后减小.系统参数变化会引起轮对系统Hopf分岔类型发生改变,即亚临界与超临界Hopf分岔相互迁移转化.轮对系统Hopf分岔域在二维参数空间的分布规律对于轮对系统参数匹配和优化设计具有一定的指导意义.  相似文献   

9.
The dynamics of a system of coupled oscillators possessing strongly nonlinear stiffness and damping is examined. The system consists of a linear oscillator coupled to a strongly nonlinear, light attachment, where the nonlinear terms of the system are realized due to geometric effects. We show that the effects of nonlinear damping are far from being purely parasitic and introduce new dynamics when compared to the corresponding systems with linear damping. The dynamics is analyzed by performing a slow/fast decomposition leading to slow flows, which in turn are used to study transient instability caused by a bifurcation to 1:3 resonance capture. In addition, a new dynamical phenomenon of continuous resonance scattering is observed that is both persistent and prevalent for the case of the nonlinearly damped system: For certain moderate excitations, the transient dynamics “tracks” a manifold of impulsive orbits, in effect transitioning between multiple resonance captures over definitive frequency and energy ranges. Eventual bifurcation to 1:3 resonance capture generates the dynamic instability, which is manifested as a sudden burst of the response of the light attachment. Such instabilities that result in strong energy transfer indicate potential for various applications of nonlinear damping such as in vibration suppression and energy harvesting.  相似文献   

10.
耦合变形对大范围运动柔性梁动力学建模的影响   总被引:1,自引:0,他引:1  
柔性梁在作大范围空间运动时,产生弯曲和扭转变形,这些变形的相互耦合形成了梁在纵向以及横向位移的二次耦合变量。本文考虑了变形产生的几何非线性效应对运动柔性梁的影响,在其三个方向的变形中均考虑了二次耦合变量,利用弹性旋转矩阵建立了准确的几何非线性变形方程,通过Lagrange方程导出系统的动力学方程。仿真结果表明,在大范围运动情况下,仅在纵向变形中计及了变形二次耦合量的一次动力学模型,与考虑了完全几何非线性变形的模型具有一定的差异。  相似文献   

11.
Transverse vibrations are considered for a single mass/two-degrees-of-freedom rotating shaft with linear internal or “rotating” damping and nonlinear external damping. The shaft is excited by external random forces. Analysis of resulting random vibrations is based on stochastic averaging method which yields separated (in the linear approximation) equations for complex amplitudes of forward and backward whirling motions. The former of these motions is shown to be dominant at rotation speeds in the vicinity of the instability threshold. Using this approximation an analytical solution is obtained for probability density of squared radius of the shaft's whirl. This solution can be used to detect on-line shaft's instability from its observed response. Solution is also obtained for expected time for reaching given level by the squared whirl radius of the shaft.  相似文献   

12.
The nonlinear vibrations of a composite laminated cantilever rectangular plate subjected to the in-plane and transversal excitations are investigated in this paper. Based on the Reddy??s third-order plate theory and the von Karman type equations for the geometric nonlinearity, the nonlinear partial differential governing equations of motion for the composite laminated cantilever rectangular plate are established by using the Hamilton??s principle. The Galerkin approach is used to transform the nonlinear partial differential governing equations of motion into a two degree-of-freedom nonlinear system under combined parametric and forcing excitations. The case of foundational parametric resonance and 1:1 internal resonance is taken into account. The method of multiple scales is utilized to obtain the four-dimensional averaged equation. The numerical method is used to find the periodic and chaotic motions of the composite laminated cantilever rectangular plate. It is found that the chaotic responses are sensitive to the changing of the forcing excitations and the damping coefficient. The influence of the forcing excitation and the damping coefficient on the bifurcations and chaotic behaviors of the composite laminated cantilever rectangular plate is investigated numerically. The frequency-response curves of the first-order and the second-order modes show that there exists the soft-spring type characteristic for the first-order and the second-order modes.  相似文献   

13.
Based on a continuum model for oriented elastic solids the set of nonlinear dispersive equations derived in Part I of this work allows one to investigate the nonlinear wave propagation of the soliton type. The equations govern the coupled rotation-displacement motions in connection with the linear elastic behavior and large-amplitude rotations of the director field. In the one-dimensional version of the equations and for two simple configurations an exhaustive study of solitons is presented. We show that the transverse and/or longitudinal elastic displacements are coupled to the rotational motion so that solitons, jointly in the rotation of the director and the elastic deformations, are exhibited. These solitons are solutions of a system of linear wave equations for the elastic displacements which are nonlinearly coupled to a sine-Gordon equation for the rotational motion. For each configuration, the solutions are numerically illustrated and the energy of the solitions is calculated. Finally, some applications of the continuum model and the related nonlinear dynamics to several physical situations are given and additional more complex problems are also evoked by way of conclusion.  相似文献   

14.
A nonlinear time-varying dynamic model for a multistage planetary gear train, considering time-varying meshing stiffness, nonlinear error excitation, and piece-wise backlash nonlinearities, is formulated. Varying dynamic motions are obtained by solving the dimensionless equations of motion in general coordinates by using the varying-step Gill numerical integration method. The influences of damping coefficient, excitation frequency, and backlash on bifurcation and chaos properties of the system are analyzed through dynamic bifurcation diagram, time history, phase trajectory, Poincaré map, and power spectrum. It shows that the multi-stage planetary gear train system has various inner nonlinear dynamic behaviors because of the coupling of gear backlash and time-varying meshing stiffness. As the damping coefficient increases, the dynamic behavior of the system transits to an increasingly stable periodic motion, which demonstrates that a higher damping coefficient can suppress a nonperiodic motion and thereby improve its dynamic response. The motion state of the system changes into chaos in different ways of period doubling bifurcation, and Hopf bifurcation.  相似文献   

15.
We consider laminar high-Reynolds-number flow through a long finite-length planar channel, where a segment of one wall is replaced by a massless membrane held under longitudinal tension. The flow is driven by a fixed pressure difference across the channel and is described using an integral form of the unsteady boundary-layer equations. The basic flow state, for which the channel has uniform width, exhibits static and oscillatory global instabilities, having distinct modal forms. In contrast, the corresponding local problem (neglecting boundary conditions associated with the rigid parts of the system) is found to be convectively, but not absolutely, unstable to small-amplitude disturbances in the absence of wall damping. We show how amplification of the primary global oscillatory instability can arise entirely from wave reflections with the rigid parts of the system, involving interacting travelling-wave flutter and static-divergence modes that are convectively stable; alteration of the mean flow by oscillations makes the onset of this primary instability subcritical. We also show how distinct mechanisms of energy transfer differentiate the primary global mode from other modes of oscillatory instability.  相似文献   

16.
张银龙  沈庆  陈徐均 《应用力学学报》2005,22(2):247-252,i009
波浪和内部滑动车辆共同作用,使滚装船的横摇加剧。这是许多滚装船发生倾覆的重要原因之一。本文对由滚装船和滑动车辆组成的浮基多体系统中,取滚装船的横摇角和车辆在甲板上的横向位移为此系统的两个自由度。考虑非线性恢复力矩和非线性阻尼力矩的影响,运用浮基多体系统动力学方法,建立了系统的动力学方程。以某型海峡滚装渡轮为例,对在若干车辆同步滑动和波浪共同作用下的滚装船非线性横摇响应和车辆位移响应进行了数值计算,并与线性响应进行了比较,得出了考虑非线性时横摇角显著偏大的结论。  相似文献   

17.
The three-dimensional nonlinear planar dynamics of an axially moving Timoshenko beam is investigated in this paper by means of two numerical techniques. The equations of motion for the longitudinal, transverse, and rotational motions are derived using constitutive relations and via Hamilton’s principle. The Galerkin method is employed to discretize the three partial differential equations of motion, yielding a set of nonlinear ordinary differential equations with coupled terms. This set is solved using the pseudo-arclength continuation technique so as to plot frequency-response curves of the system for different cases. Bifurcation diagrams of Poincaré maps for the system near the first instability are obtained via direct time integration of the discretized equations. Time histories, phase-plane portraits, and fast Fourier transforms are presented for some system parameters.  相似文献   

18.
针对航天器的柔性附件,将其简化为常见的大范围运动空间柔性梁结构。根据柔性体的非线性变形原理,考虑了弯曲和扭转的非线性因素的影响,在柔性梁的三个变形方向上均考虑了变形的二次耦合项。利用有限元方法进行离散并用Lagrange方程建立了非线性变形模式下的动力学方程,包含了较为完全的刚度矩阵和各种耦合项。对一大范围运动的空间梁进行了仿真计算,表明在运动速度较大并且基座具有大范围运动时,一次耦合模型与本文模型有一定差异,且初始变形对两种模型也会产生影响。  相似文献   

19.
Nonlinear damping suspension is a promising method to be used in a rotor-bearing system for vibration isolation between the bearing and environment. However, the nonlinearity of the suspension may influence the stability of the rotor-bearing system. In this paper, the motions of a flexible rotor in short journal bearings with nonlinear damping suspension are studied. A computational method is used to solve the equations of motion, and the bifurcation diagrams, orbits, Poincaré maps, and amplitude spectra are used to display the motions. The results show that the effect of the nonlinear damping suspension on the motions of the rotor-bearing system depends on the speed of rotor: (a) For low speeds, the rotor- bearing system presents the same motion pattern under the nonlinear damping ( \(p=0.5, 2, 3\) ) suspension as for the linear damping ( \(p=1\) ) suspension; (b) For high speeds, the effect of nonlinear damping depends on a combination of the damping exponent and damping coefficient. The square root damping model ( \(p=0.5\) ) shows a wider stable speed range than the linear damping for large damping coefficients. The quadratic damping ( \(p=2\) ) shows similar results to linear damping with some special damping coefficients. The cubic damping ( \(p=3\) ) shows more stable response than the linear damping in general.  相似文献   

20.
任勇生  姚东辉 《力学学报》2017,49(4):907-919
旋转复合材料轴作为一类典型的转子动力学系统,在先进直升机和汽车动力驱动系统中有着广阔的应用前景.研究旋转复合材料轴的非线性振动特性具有重要的理论与实用价值.然而,目前有关旋转轴的非线性振动研究仅限于各向同性金属材料轴,很少考虑材料内阻的影响.本文研究具有材料内阻的旋转非线性复合材料轴的主共振.非线性来源于不可伸长复合材料轴的大变形引起的非线性曲率和非线性惯性,材料内阻来源于复合材料的黏弹性.动力学建模计入转动惯量和陀螺效应.基于扩展的Hamilton原理,导出具有偏心激励的旋转复合材料轴的弯-弯耦合非线性振动偏微分方程组.采用Galerkin法将偏微分方程离散化为常微分方程,采用多尺度法对常微分方程进行摄动分析,导出主共振响应的解析表达式.对内阻、外阻、铺层角、长径比、铺层方式和偏心距进行数值分析,研究上述参数对旋转非线性复合材料轴的稳态受迫振动响应行为的影响.研究发现,角铺设复合材料轴的内阻系数随着铺层角的增大而增大;内阻对主共振响应特性的影响主要体现在对抑制振幅和改变频率响应的稳定性方面;发生在正进动固有频率附近的主共振响应具有典型的硬弹簧非线性特性.本文提出的模型能够用于描述旋转复合材料轴的主共振特性,是对不可伸长旋转金属轴非线性动力学模型的重要推广.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号