首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Green synthesis of noble metal nanoparticles is a vast developing area of research. In this paper we report the green synthesis of silver nanoparticles using aqueous seed extract of Macrotyloma uniflorum. The effect of experimental parameters such as amount of extract, temperature and pH on the formation of silver nanoparticles was studied. The as prepared samples are characterized using XRD, TEM, UV-Visible and FTIR techniques. The formation of silver nanoparticles is evidenced by the appearance of signatory brown colour of the solution and UV-vis spectra. The XRD analysis shows that the silver nanoparticles are of face centered cubic structure. Well-dispersed silver nanoparticles with anisotropic morphology having size ~12 nm are seen in TEM images. FTIR spectrum indicates the presence of different functional groups in capping the nanoparticles. The possible mechanism leading to the formation of silver nanoparticles is suggested.  相似文献   

2.
In this work, we exhibited the results of the green synthesis of gold nanoparticles by aqueous extract of Schinus molle L. leaves. The chemical reaction was carried out by varying the plant extract/precursor salt ratio concentration in the aqueous solution. The structural characterization of the nanoparticles was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRD analysis showed that the as-synthesized AuNPs have a face-centered cubic structure. SEM and TEM observations indicated that most of the obtained particles have multiple twinning structures (MTP). The synthesized Au-MTP have particle sizes in the range of 10–60 nm, most of them with an average size of about 24 nm. However, triangular Au plate particles were also obtained, having an average size of 180 nm. Fourier transforms infrared spectroscopy and shows that the functional groups responsible for the chemical reduction of AuNPs are phenolic compounds present in the S. molle L. leaf.  相似文献   

3.
The biological synthesis of gold nanoparticles (AuNPs) of various shapes (triangle, hexagonal, and spherical) using hot water olive leaf extracts as reducing agent is reported. The size and the shape of Au nanoparticles are modulated by varying the ratio of metal salt and extract in the reaction medium. Only 20 min were required for the conversion into gold nanoparticles at room temperature, suggesting a reaction rate higher or comparable to those of nanoparticles synthesis by chemical methods. The variation of the pH of the reaction medium gives AuNPs nanoparticles of different shapes. The nanoparticles obtained are characterized by UV–Vis spectroscopy, photoluminescence, transmission electron microscopy (TEM), X-ray diffraction (XRD), FTIR spectroscopy and thermogravimetric analysis. The TEM images showed that a mixture of shapes (triangular, hexagonal and spherical) structures was formed at lower leaf broth concentration and high pH, while smaller spherical shapes were obtained at higher leaf broth concentration and low pH.  相似文献   

4.
In this study, hydrogel-silver nanocomposites have been synthesized by a unique methodology, which involves formation of silver nanoparticles within swollen poly (acrylamide-co-acrylic acid) hydrogels. The formation of silver nanoparticles was confirmed by transmission electron microscopy (TEM) and surface plasmon resonance (SPR) which was obtained at 406 nm. The TEM of hydrogel-silver nanocomposites showed almost uniform distribution of nanoparticles throughout the gel networks. Most of the particles, as revealed from the particle-size distribution curve, were 24-30 nm in size. The X-ray diffraction pattern also confirmed the face centered cubic (fcc) structure of silver nanoparticles. The nanocomposites demonstrated excellent antibacterial effects on Escherichia coli (E. coli). The antibacterial activity depended on size of the nanocomposites, amount of silver nanoparticles, and amount of monomer acid present within the hydrogel-silver nanocomposites. It was also found that immersion of plain hydrogel in 20 mg/30 ml AgNO(3) solution yielded nanocomparticle-hydrogel composites with optimum bactericidal activity.  相似文献   

5.
The synthesis of metal nanoparticles of different sizes, shapes, chemical composition and controlled monodispersity is an important area of research in nanotechnology because of their interesting physical properties and technological applications. Present work describes an eco-friendly method for the synthesis of spherical gold nanoparticles using aqueous extract of Macrotyloma uniflorum. The effects of quantity of extract, temperature and pH on the formation of nanoparticles are studied. The nanoparticles are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. The high crystallinity of nanoparticles with fcc phase is evident from HRTEM images, SAED and XRD patterns. Synthesized nanoparticles have size in the range 14-17nm. FTIR spectrum indicates the presence of different functional groups present in the bio-molecule capping the nanoparticles. The possible mechanism leading to the formation of gold nanoparticles is suggested.  相似文献   

6.
Magnetite nanoparticles with tunable gold or silver shell   总被引:7,自引:0,他引:7  
Fe3O4 nanoparticles with size approximately 13 nm have been prepared successfully in aqueous micellar medium at approximately 80 degrees C. To make Fe3O4 nanoparticles resistant to surface poisoning a new route is developed for coating Fe3O4 nanoparticles with noble metals such as gold or silver as shell. The shell thickness of the core-shell particles becomes tunable through the adjustment of the ratio of the constituents. Thus, the route yields well-defined core-shell structures of size from 18 to 30 nm with varying proportion of Fe3O4 to the noble metal precursor salts. These magnetic nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), FTIR, differential scanning calorimetry (DSC), Raman and temperature-dependent magnetic studies.  相似文献   

7.
Green methods using biological extracts, in particular plant-based solutions, have shown great potential for silver nanoparticle synthesis. A microwave-assisted single-step phytosynthesis of silver nanoparticles is described in the present study. The aqueous extract obtained from the Rosa santana (rose) petals was used for the first time in the synthesis. The synthesized nanoparticles obtained after optimized microwave conditions for time and temperature were analyzed by ultraviolet–visible spectroscopy (UV–Vis), Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and Zeta-size analysis. The results obtained from the characterization studies showed that the synthesized nanoparticles were nearly spherical in shape with sizes from 6.52?nm to 25.24?nm with an average particle size of 14.48?nm with a face-centered cubic structure. The antibacterial activities of the synthesized nanoparticles were evaluated and revealed that the silver nanoparticles displayed good inhibition against both Gram-negative and Gram-positive bacteria. Also, the cytotoxic effect of the silver nanoparticles on a mouse fibroblast cell line (L929) was studied by a cell viability assay. The results showed that phytosynthesized silver nanoparticles were nontoxic to the healthy normal cell line at all tested concentrations.  相似文献   

8.
We report a novel strategy for the biological synthesis of anisotropic gold and quasi-spherical silver nanoparticles by using apiin as the reducing and stabilizing agent. The size and shape of the nanoparticles can be controlled by varying the ratio of metal salts to apiin compound in the reaction medium. The resultant nanoparticles were characterized by UV-vis-NIR, transmission electron microscopy (TEM), FT-IR spectroscopy, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The interaction between nanoparticles with carbonyl group of apiin compound was confirmed by using FT-IR analysis. TEM photograph confirming the average size of the gold and silver nanoparticles were found to be at 21 and 39 nm. The NIR absorption of the gold nanotriangles is expected to be of application in hyperthermia of cancer cells and in IR-absorbing optical coatings.  相似文献   

9.
Green methods are a safer alternative to natural chemical and physical methods for the synthesis of silver nanoparticles (Ag-NPs), due to their being environmentally friendly and cost effective. This study offers a new green approach using ultrasound irradiation as the reducing agent and seaweed Kappaphycus alvarezii (K. alvarezii) as the natural bio-media. The seaweed K. alvarezii/Ag-NPs was characterised by ultraviolet–visible (UV–vis), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope with energy dispersive X-ray (FESEM-EDX), zeta potential, and Fourier transform infrared (FTIR) studies. UV–vis shows that surface plasmon resonance (SPR) arises from this solution due to the combined oscillations from the nanoparticles. The XRD study indicates the crystalline nature of the Ag-NPs. From the TEM images, the Ag-NPs are almost spherical with an average diameter of 11.78 nm. The FTIR spectrum provides adequate evidence of phytochemicals stabilising the nanoparticles. Synthesised Ag-NPs were successfully obtained using this green method.  相似文献   

10.
Novel multifunctional hybrid nanocomposites with silver and gold nanoparticles stabilized by original polymer matrix based on poly-1-vinyl-1,2,4-triazole were synthesized and studied using UV and IR spectroscopy, X-ray diffraction analysis and transmission electron microscopy. The obtained nanocomposites comprise silver or gold nanoparticles of spherical and elliptical shape with size 3–20 nm and 1–10 nm, respectively.  相似文献   

11.
Stable silver nanoparticles were synthesized with the aid of a novel, non-toxic, eco-friendly biological material namely, green pepper extract. The aqueous pepper extract was used for reducing silver nitrate. The synthesized silver nanoparticles were analyzed with transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). TEM image shows the formation of silver nanoparticles with average particle size of 20 nm which agrees well with the XRD data. The main advantage of using pepper extract as a stabilizing agent is that it provides long-term stability for nanoparticles by preventing particles agglomeration. To investigate the electrocatalytic efficiency of silver nanoparticles, silver nanoparticles modified carbon-paste electrode (AgNPs–CPE) displayed excellent electrochemical catalytic activities towards hydrogen peroxide (H2O2) and hydrogen evolution reaction (HER). The reduction overpotential of H2O2 was decreased significantly compared with those obtained at the bare CPE. An abrupt increase of the cathodic current for HER was observed at modified electrode. Also, the antibacterial activity of silver nanoparticle was performed using Escherichia coli and Salmonellae. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.  相似文献   

12.
牟博  雷忠利  杨红  李娜 《物理化学学报》2009,25(11):2399-2403
采用原子转移自由基聚合(ATRP)法合成了聚苯乙烯-b-聚(N-异丙基丙烯酰胺)(PS-b-PNIPAM)两亲性嵌段共聚物, 并以其为模板, 聚乙烯亚胺(PEI)作为银离子和嵌段共聚物PS-b-PNIPAM的交联剂以及还原剂, 制备了PS-b-PNIPAM/Ag复合纳米微粒. 利用透射电子显微镜(TEM)、X射线衍射(XRD)和傅里叶变换红外(FTIR)光谱对复合纳米微粒的形貌及其成分进行了表征. X射线衍射和电子衍射证明银纳米微粒具有良好的面心立方体单晶结构. 研究结果表明, 不同浓度的两亲性嵌段共聚物PS-b-PNIPAM在丙酮中形成的胶束模板对银纳米粒子的尺寸及其分布有重要的影响.  相似文献   

13.
The Pepper leaves extract acts as a reducing and capping agent in the formation of silver nanoparticles. A UV–Vis spectrum of the aqueous medium containing silver nanoparticles demonstrated a peak at 458 nm corresponding to the plasmon absorbance of rapidly synthesized silver nanoparticles that was characterized by UV–Vis spectrophotometer. The morphology and size of the benign silver nanoparticles were carried out by the transmission electron microscope (TEM) and field emission scanning electron microscope (FE-SEM). The sizes of the synthesized silver nanoparticles were found to be in the range of 5–60 nm. The structural characteristics of biomolecules hosted silver nanoparticles were studied by X-ray diffraction. The chemical composition of elements present in the solution was determined by energy dispersive spectrum. The FTIR analysis of the nanoparticles indicated the presence of proteins, which may be acting as capping agents around the nanoparticles. This study reports that synthesis is useful to avoid toxic chemicals with adverse effects in medical applications rather than physical and chemical methods.  相似文献   

14.
In the present work, silver nanoparticles (AgNPs) were in situ generated in cellulose matrix using leaf extract of Azadirachta indica as a reducing agent. The cellulose/AgNP composite films prepared were characterized by FTIR, X-ray diffraction (XRD), scanning electron microscope, and antibacterial tests. The infrared spectra indicated the association of organic materials with silver nanoparticles to serve as capping agents. Scanning electron micrographs showed that synthesized silver nanoparticles were nearly uniform and spherical in shape with diameter in the range of 61–110?nm. XRD confirmed the formation of AgNPs and Ag–O nanoparticles. The nanocomposite films showed good antibacterial activity against Escherichia coli bacteria.  相似文献   

15.
We demonstrate that dihydroxy benzenes are excellent reducing agents and may be used to reduce silver ions to synthesize stable silver nanoparticles in air-saturated aqueous solutions. The formation of Ag nanoparticles in deaerated aqueous solution at high pH values suggests that the reduction of silver ions occurs due to oxidation of dihydroxy benzenes and probably on the surface of Ag2O. Pulse radiolysis studies show that the semi-quinone radical does not participate in the reduction of silver ions at short time scales. Nevertheless, results show that primary intermediates undergo slower transformation in the presence of dihydroxy benzenes than in their absence. This slow transformation eventually leads to the formation of silver nanoparticles. The Ag nanoparticles were characterized by UV-vis absorption spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). XRD and TEM techniques showed the presence of Ag nanoparticles with an average size of 30 nm.  相似文献   

16.
A new thermally stable polyimide–silver nanocomposite containing dibenzalacetone moiety in the main chain was synthesized by a convenient ultraviolet irradiation technique. A precursor such as AgNO3 was used as the source of the silver nanoparticles. Polyimide 6 as a source of polymer was prepared by polycondensation reaction of 2,5-bis(4-aminobenzylidene) cyclopentanone 4 with pyromellitic anhydride 5 in m-cresol solution and in the presence of iso-quinoline as a base. The resulting nanocomposite film was characterized by FTIR spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), Thermal gravimetric analyses (TGA), differential gravimetric analyses (DTG) and differential scanning calorimetry (DSC). Scanning electron microscopy (SEM) confirmed the formation and dispersion of silver nanoparticles in polymer matrix having average size of ~20 nm. Incorporation of inorganic metal silver nanoparticles has improved the thermal behavior of the nanocomposite film as compared to pure polyimide film. Also 2,5-bis(4-aminobenzylidene) cyclopentanone 4 was synthesized by using a two-step reaction.  相似文献   

17.
聚合物存在下纳米银复合材料的制备与表征   总被引:1,自引:0,他引:1  
以聚丙烯腈聚乙二醇嵌段共聚物PAN-b-PEG-b-PAN为稳定剂, 在超声辐照下成功地制备了分散性较好、尺寸均匀的纳米银颗粒. 用X射线衍射(XRD)、红外光谱(FTIR)、透射电镜(TEM)、紫外-可见吸收光谱(UV-Vis)和热分析(TGA)等对制备的纳米银复合材料进行了表征. 红外结果表明超声辐照并没有破坏聚合物的链结构. 聚合物的引入, 对纳米银颗粒起到了很好的分散保护作用. 用低浓度的硝酸银溶液, 得到粒径较小的纳米银颗粒; 随着硝酸银浓度增大, 纳米银颗粒粒径也增大. 而聚合物的浓度增大时, 所得银纳米颗粒粒径减小. 对银纳米颗粒的形成机理进行了讨论.  相似文献   

18.
A simple and green approach for the synthesis of well‐stabilized gold nanoparticles (AuNPs) using gum Acacia (GA) is presented here. The gum acacia acts as the reductant and stabilizer. The synthesized gold nanoparticles were characterized by using ultraviolet visible (UV‐Vis), fourier transform infrared spectroscopy (FTIR), x‐ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM) techniques. The UV‐Vis study revealed a distinct surface plasmon resonance at 520 – 550 nm, due to the formation of AuNPs. FTIR analysis showed the evidence that –OH groups present in the gum matrix were responsible in reducing the tetra chloroauric acid into AuNPs. XRD studies confirmed the formation of well crystalline nanoparticles with fcc structure and the particle size ranges from 4 – 29 nm, as indicated by TEM analysis. The synthesized gold nanoparticles exhibited homogeneous catalytic activity. The two model reactions studied were the reduction of p‐nitro phenol and the reduction of hexacyanoferrate (III) by borohydride ions. Both the reactions were monitored by UV‐Vis spectroscopy. The kinetic investigations were carried out for the AuNPs‐catalyzed reactions at different temperatures and different amount of catalyst.  相似文献   

19.
A simple method is used to control the size of cetyltrimethylammoniumbromide‐protected Au nanoparticles by a reversal micelle in safe organic solvent. These Au nanoparticles can be evolved to highly monodisperse Au nanoparticles capped 1‐dodecanthiol in the 2, 3, and 5 nm diameter by refluxing at~160°C for 7 hours. Their ultraviolet visible spectroscopy (UV‐vis), x‐ray diffraction (XRD, transmission electron microscopy (TEM) showed that all the three different size gold nanoparticles(NPs) displayed high size homogenous properties and easy formed large areas of long ordered two‐dimensional arrangement at the air/solid interface.  相似文献   

20.
A versatile green and nontoxic begin method for bio-reduction of silver nanoparticles (AgNPs) using latex extract of Ipomea carnea was reported. Different instrumental tools were applied to evaluate the formation of AgNPs, as an example UV–Visible spectroscopy (UV–Vis), Fourier transform infra-red (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HR-TEM). The absorption peak of AgNPs obtained at around 413 nm. FTIR study confirmed that the bio-capping components present in latex extract served as reducing and stabilizing agent. The findings of XRD, SEM and HR-TEM images revealed that the formation of crystalline and spherical shape nanoparticles and showed well size distribution with mean size 9.8±0.27 nm. Additionally, the green fabricated AgNPs exhibited considerable zone of inhibition for both Gram-positive and Gram–negative bacteria. The outcome implies that the synthesized AgNPs also showed similar inhibition effect as streptomycin (a common reference antibiotic).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号