首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李德俊  米贤武  邓科 《物理学报》2010,59(10):7344-7349
使用Hartree近似和一种简化的准离散多标度方法,研究了具有交换作用和经典磁矩相互作用的一维铁磁链中的量子孤波解. 这种一维铁磁链中不仅存在着运动的量子孤波,也存在着静态的量子孤波(即量子内禀局域模).利用所获得的量子孤波解,进一步研究了量子孤波的能级和由量子孤波所携带的磁矩. 研究表明,量子孤波的能量和磁矩都是量子化的,这些结果为正确理解磁性材料中像磁滞回线的量子台阶等宏观量子特性提供了一条可能的途径.  相似文献   

2.
Zhenya Yan 《Physics letters. A》2009,373(29):2432-2437
The three-dimensional extended quantum Zakharov-Kuznetsov (ZK) equation was investigated in dense quantum plasmas which arises from the dimensionless hydrodynamics equations describing the nonlinear propagation of the quantum ion-acoustic waves. With the aid of symbolic computation, many types of new analytical solutions of the extended quantum ZK equation are constructed in terms of some powerful ansatze, which include new doubly periodic wave, solitary wave, shock wave, rational wave, and singular wave solutions. Moreover, we analyze the nonlinear wave propagation of the obtained solutions for some chosen parameters.  相似文献   

3.
The 2-D generalized variable-coefficient Kadomtsev-Petviashvili-Burgers equation representing many types of acoustic waves in cosmic and/or laboratory dusty plasmas is reduced by the modified classical direct similarity reduction method to nonlinear ordinary differential equation of fourth-order. Using the extended Riccati equation mapping method for solving the reduced equation, many new shock wave, solitary wave and periodic wave solutions are obtained with some constraints between the variable coefficients. Finally, some physical interpretations for the obtained solutions as, bright and dark solitons, periodic solitary wave, and shock wave in dust plasma and quantum plasma are achieved.  相似文献   

4.
BISWAJIT SAHU 《Pramana》2011,76(6):933-944
Small amplitude quantum ion-acoustic solitary waves are studied in an unmagnetized two- species relativistic quantum plasma system, comprised of electrons and ions. The one-dimensional quantum hydrodynamic model (QHD) is used to obtain a deformed Korteweg–de Vries (dKdV) equation by reductive perturbation method. A linear dispersion relation is also obtained taking into account the relativistic effect. The properties of quantum ion-acoustic solitary waves, obtained from the deformed KdV equation, are studied taking into account the quantum mechanical effects in the weak relativistic limit. It is found that relativistic effects significantly modify the properties of quantum ion-acoustic waves. Also the effect of the quantum parameter H on the nature of solitary wave solutions is studied in some detail.  相似文献   

5.
余小燕  陈浩 《中国物理 B》2011,20(12):120509-120509
By using the traveling wave method, the solutions of the elliptic function wave and the solitary wave are obtained in a ferromagnetic spin chain with a biquadratic exchange interaction, a single ion anisotropic interaction and an anisotropic nearest neighbour interaction. The effects of the biquadratic exchange interaction and the single ion anisotropic interaction on the properties (width, peak and stability) of the soliton are investigated. It is also found that the effects vary with the strengths of these interactions.  相似文献   

6.
The modulational instability, quantum breathers and two-breathers in a frustrated easy-axis ferromagnetic zig-zag chain under an external magnetic field are investigated within the Hartree approximation. By means of a linear stability analysis, we analytically study the discrete modulational instability and analyze the effect of the frustration strength on the discrete modulational instability region. Using the results from the discrete modulational instability analysis, the presence conditions of those stationary bright type localized solutions are presented. On the other hand, we obtain the analytical expressions for the stationary bright localized solutions and analyze the effect of the frustration on their emergence conditions. By taking advantage of these bright type single-magnon bound wave functions obtained, quantum breather states in the present frustrated ferromagnetic zig-zag lattice are constructed. What is more, the analytical forms for quantum two-breather states are also obtained. In particular, the energy level formulas of quantum breathers and two-breathers are derived.  相似文献   

7.
王悦悦  杨琴  戴朝卿  张解放 《物理学报》2006,55(3):1029-1034
借助Maple程序,利用扩展的双曲函数法和双函数法求解了考虑量子效应的Zakharov方程组,得到了多种孤波解,其中包括亮孤波解、W型孤波解、M型孤波解和奇性孤波解. 关键词: 量子效应 Zakharov方程组 扩展的双曲函数法 孤波解  相似文献   

8.
Bessel solitary wave solutions to a two-dimensional strongly nonlocal nonlinear Schrödinger equation with distributed coefficients are obtained. Bessel solitary wave solutions have unique characteristics compared with Gaussian solitary wave solutions, Laguerre-Gaussian solitary wave solutions, and Hermite-Gaussian solitary wave solutions. The generalized two-dimensional nonlocal nonlinear Schrödinger equation with distributed coefficients is investigated for the first time to our knowledge.  相似文献   

9.
ABSTRACT

In framework of the extended Poincaré–Lighthill–Kuo, the properties of dust acoustic (DA) solitary wave’s interaction are investigated in four-component quantum dusty plasma. Two Korteweg–de Vries equations describing the colliding DA solitary waves are derived by eliminating the secularities. By knowing the explicit form of the solitary wave solutions, the leading phase changes, trajectories and phase shifts are obtained, accordingly. The effects of various physical parameters such as the quantum mechanical parameters, the charge ratio between positive and negative dust particles, the mass ratio between negative and positive dust particles and the ratio of electron to ion temperatures are studied extensively. Our findings showed that these parameters play a significant role on the characteristics and basic features of DA solitary waves such as phase shifts in trajectories due to collision. The obtained results may be beneficial to understand well the collision of DA solitary waves that may occur in laboratory plasmas, space plasma as well as in plasma applications.  相似文献   

10.
In this research, we apply two different techniques on nonlinear complex fractional nonlinear Schrödinger equation which is a very important model in fractional quantum mechanics. Nonlinear Schrödinger equation is one of the basic models in fibre optics and many other branches of science. We use the conformable fractional derivative to transfer the nonlinear real integer-order nonlinear Schrödinger equation to nonlinear complex fractional nonlinear Schrödinger equation. We apply new auxiliary equation method and novel \(\left( {G'}/{G}\right) \)-expansion method on nonlinear complex fractional Schrödinger equation to obtain new optical forms of solitary travelling wave solutions. We find many new optical solitary travelling wave solutions for this model. These solutions are obtained precisely and efficiency of the method can be demonstrated.  相似文献   

11.
A quantum mechanical treatment of Takeno model for energy transport in protein is presented and the cubic anharmonicity of the hydrogen-bonded interaction is also taken into account. Under the continuum approximation, two coupled nonlinear differential equations are obtained, and then exact and approximate solitary wave solutions are found. The ideal parameters for protein are used to show whether the soliton solutions can exist for real protein molecules.  相似文献   

12.
An extended hyperbola function method is proposed to construct exact solitary wave solutions to nonlinear wave equation based upon a coupled Riccati equation. It is shown that more new solitary wave solutions can be found by this new method, which include kink-shaped soliton solutions, bell-shaped soliton solutions and new solitary wave.The new method can be applied to other nonlinear equations in mathematical physics.  相似文献   

13.
利用同伦分析法求解了Burgers方程,得到了其扭结形孤立波的近似解析解,该解非常接近于相应的精确解.结果表明,同伦分析法可用来求解非线性演化方程的孤立波解.同时,也对所用方法进行了一定扩展,得到了Kadomtsev-Petviashvili(KP)方程的钟形孤立子解.经过扩展后的方法能够更方便地用于求解更多非线性演化方程的高精度近似解析解. 关键词: Burgers方程 同伦分析法 KP方程 孤立波解  相似文献   

14.
利用函数展开法求解修正耦合KdV(Coupled KdV,cKdV)方程组,得到几类孤立波解,包括扭结型-钟型、双扭结型、双钟型以及双扭结-双钟型结构的单孤子解.在不同的极限情况下,这些解分别退化为修正cKdV方程的扭结状或钟状孤波解.对孤立波的稳定性进行了数值研究,结果表明:修正cKdV方程既存在稳定的孤立波解,也存在不稳定的孤立波解.  相似文献   

15.
It is shown that due to high-order terms in the Holstein-Primakoff boson-like spin operator transformation we can have a solitary wave solution even in an isotropic ferromagnetic chain.  相似文献   

16.
It is known that there are nonlinear wave equations with localized solitary wave solutions. Some of these solitary waves are stable (with respect to a small perturbation of initial data) and have nonzero spin (nonzero intrinsic angular momentum in the center of momentum frame). In this paper we consider vector-valued solitary wave solutions to a nonlinear Klein-Gordon equation and investigate the behavior of these spinning solitary waves under the influence of an externally imposed uniform magnetic field. We find that the only stationary spinning solitary wave solutions have spin parallel or anti-parallel to the magnetic field direction.  相似文献   

17.
The searching exact solutions in the solitary wave form of non-linear partial differential equations(PDEs play a significant role to understand the internal mechanism of complex physical phenomena. In this paper, we employ the proposed modified extended mapping method for constructing the exact solitary wave and soliton solutions of coupled Klein-Gordon equations and the(2+1)-dimensional cubic Klein-Gordon(K-G) equation. The Klein-Gordon equation are relativistic version of Schr¨odinger equations, which describe the relation of relativistic energy-momentum in the form of quantized version. We productively achieve exact solutions involving parameters such as dark and bright solitary waves, Kink solitary wave, anti-Kink solitary wave, periodic solitary waves, and hyperbolic functions in which severa solutions are novel. We plot the three-dimensional surface of some obtained solutions in this study. It is recognized that the modified mapping technique presents a more prestigious mathematical tool for acquiring analytical solutions o PDEs arise in mathematical physics.  相似文献   

18.
In this Letter, we discuss the electron acoustic (EA) waves in plasmas, which consist of nonthermal hot electrons featuring the Tsallis distribution, and obtain the corresponding governing equation, that is, a nonlinear Schrödinger (NLS) equation. By means of Modulation Instability (MI) analysis of the EA waves, it is found that both electron acoustic solitary wave and rogue wave can exist in such plasmas. Basing on the Darboux transformation method, we derive the analytical expressions of nonlinear solutions of NLS equations, such as single/double solitary wave solutions and single/double rogue wave solutions. The existential regions and amplitude of solitary wave solutions and the rogue wave solutions are influenced by the nonextensive parameter q and nonthermal parameter α. Moreover, the interaction of solitary wave and how to postpone the excitation of rogue wave are also studied.  相似文献   

19.
In this Letter, we investigate the perturbed nonlinear Schrödinger's equation (NLSE) with Kerr law nonlinearity. All explicit expressions of the bounded traveling wave solutions for the equation are obtained by using the bifurcation method and qualitative theory of dynamical systems. These solutions contain bell-shaped solitary wave solutions, kink-shaped solitary wave solutions and Jacobi elliptic function periodic solutions. Moreover, we point out the region which these periodic wave solutions lie in. We present the relation between the bounded traveling wave solution and the energy level h. We find that these periodic wave solutions tend to the corresponding solitary wave solutions as h increases or decreases. Finally, for some special selections of the energy level h, it is shown that the exact periodic solutions evolute into solitary wave solution.  相似文献   

20.
This paper discusses the existence of ion-acoustic solitary waves and their interaction in a dense quantum electron-positron-ion plasma by using the quantum hydrodynamic equations.The extended Poincar’e-Lighthill-Kuo perturbation method is used to derive the Korteweg-de Vries equations for quantum ion-acoustic solitary waves in this plasma.The effects of the ratio of positrons to ions unperturbation number density p and the quantum diffraction parameter H e (H p) on the newly formed wave during interaction,and the phase shift of the colliding solitary waves are studied.It is found that the interaction between two solitary waves fits linear superposition principle and these plasma parameters have significantly influence on the newly formed wave and phase shift of the colliding solitary waves.The investigations should be useful for understanding the propagation and interaction of ion-acoustic solitary waves in dense astrophysical plasmas (such as white dwarfs) as well as in intense laser-solid matter interaction experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号