首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of various additives, including electrolytes, alcohols and organic acids, polymers, and ionic and nonionic surfactants, on the cloud point of dodecyl polyoxyethylene (5) polyoxypropylene (4) ether nonionic surfactant aqueous solutions are investigated. The salting-out electrolytes decrease the cloud point while salting-in electrolytes increase it. Most alcohols and organic acids can lower the cloud point except for methanol and ethanol. The polymers form complexes with the surfactant and decrease the cloud point. The added surfactants can be inserted into the micelles of the nonionic surfactant and form mixed micelles, thus raising the cloud point.  相似文献   

2.
Effects of various additives including inorganic salts, nonionic and ionic surfactants, water-soluble polymers and alcohols on the cloud points of three linear nonionic surfactants, Tergitol 15-S-7, Tergitol 15-S-9 and Neodol 25-7, were investigated. These surfactants are readily biodegradable and either linear primary or secondary ethoxylated alcohols. Cloud points of these surfactants were functions of their concentrations and concentrations of additives. The cloud points of nonionic surfactant mixtures lay in between the cloud points of individual component surfactants. Presence of two ionic surfactants, sodium dodecyl sulfate (SDS) and cetyl trimethyl ammonium bromide (CTAB), increased the cloud point of 1 wt% Tergitol 15-S-7 micellar solution dramatically when concentrations of ionic surfactants approaching their critical micelle concentration. Addition of water-soluble polymers decreased the cloud point, while addition of inorganic salts can either increase or decrease the cloud points. However, the effect of an alcohol additive on cloud point was dependent on its chain length or its water solubility. Interestingly, synergistic effects between sulfate or phosphate and pentanol on depression of cloud points of Tergitol 15-S-9 were discovered. A linear model predicting cloud points of Tergitol 15-S-X (X = 7, 9 and 12) surfactants and Neodol 25-X (X = 7, 9 and 12) surfactants were proposed with a correlation to logarithm of their ethylene oxide numbers.  相似文献   

3.
The mixed micellar properties of a triblock copolymer, Pluronic L64, (EO)13(PO)30(EO)13, and a nonionic surfactant, Triton X-100, in aqueous solution with conventional alkyl ammonium bromides and their dimeric homologues were investigated with the help of fluorescence and cloud point measurements. The composition of mixed micelles and the interaction parameter, beta, evaluated from the critical micelle concentration (cmc) data for different mixtures using Rubingh's and Motomura's theories are discussed. It has been observed that the mixed micelle formation between monomeric/dimeric alkyl ammonium bromides and L64 was due to synergistic interactions which increase with the increase in hydrophobicity of the cationic component. On the other hand, synergistic mixing was observed in the mixed micelles of Triton X-100 and monomeric cationic surfactants, the magnitude of which decreases slightly with the increase in hydrophobicity of the cationic component. Antagonistic interactions were observed in the case of Triton X-100 and dimeric cationic surfactants.  相似文献   

4.
The effects of nonionic surfactants OP-10 and OP-30 (polyoxyethylated octyl phenols with 10 and 30 oxyethylene groups, respectively) in surfactant mixtures with ionic surfactants hexadecyltrimethylammonium bromide (CTAB) and sodium dodecyl sulphate (SDS) have been investigated by a conductometric method in conjunction with fluorescence, surface tension, zeta potential, and DLS measurements. The interactions are found to be antagonistic in nature for each of the systems; i.e., micellization of CTAB as well as SDS is hindered on addition of the nonionic surfactants. The antagonism is found to be more prominent in the presence of OP-10 compared to that of OP-30. Two types of mechanistic paths, path A operating below the critical micellar concentration and path B operating beyond the critical micellar concentration of nonionic surfactants, have been suggested. In path A, the retardation in micellization has been attributed to a decrease in monomeric concentration of the ionic surfactants from solution as a result of the formation of a hydrophobic complex between nonionic and ionic surfactants. In path B, the decrease in monomer concentration is due to the solubilization of the ionic surfactant in micelles of the nonionic surfactants in a 1:1 stoichiometric ratio. A theoretical treatment to the interaction in each ionic-nonionic pair yields a positive value of the interaction parameter supporting the concept of antagonism. The formation of the hydrophobic complex is supported by fluorescence and surface tension measurements. A schematic representation of the stabilization of these hydrophobic complexes has been suggested. The association of ionic surfactants by nonionic micelles is suggested by zeta potential and DLS studies.  相似文献   

5.
We have studied aqueous micellar solutions of nonionic surfactant (pentaethylene glycol mono-n-dodecyl ether, C12E5) doped by cationic surfactant (dodecyl trimethylamoniumbromide, DTAB) as a function of doping level, using small angle neutron scattering. At a doping level of at least 6 mol %, rigid cylindrical micelles formed and the local cylindrical structure of the doped micelles showed no variation across the range of doping levels covered in this study (0-10 mol %). However, the total micellar length decreased rapidly as doping level increased, following well the prediction of micellar aggregation number based on molecular-thermodynamic theory. There was no synergistic interaction between surfactants, leading to monotonically decreasing the micellar aggregation number (shortening of the micellar length).  相似文献   

6.
The micellar effect of surfactants of various types on the rate of the reaction between methyl violet and hydroxide ion is studied. The absorption spectra show that the cation of methyl violet is bound by micelles of all types at proper concentrations of surfactants. The observed rate constant in micellar systems containing nonionic Brij-35, zwitterionic 3-(dimethyldodecylammonio)-propanesulfonate, cationic cetyltrimethylammonium bromide and hydroxide surfactants is higher, whereas in solutions of the anionic surfactant sodium dodecylsulfate is lower than that one in the surfactant-free system. Piszkiewicz's, Berezin's, and pseudophase ion-exchange models of the kinetic micellar effect are used for the treatment of the dependences of the above-mentioned constants on the surfactant concentration. The values of the corresponding kinetic parameters are compared and discussed. The influence of nonionic, zwitterionic, and anionic micelles on the reaction rate is discussed on the basis of medium and concentration kinetic effects. The character of the cationic micelles effect is somewhat paradoxical. Although the observed pseudo–first-order reaction rate constant substantially increases in the presence of such micelles, the second order-rate constant in these micelles is lower than the corresponding value in surfactant-free aqueous solution. As a possible explanation, the decrease in the reactivity of the HO ions is proposed, owing to their electrostatic association with the cationic headgroups (“diverting effect”).  相似文献   

7.
The micelles of two poly(ethylene oxide)‐poly(propylene oxide)‐poly(ethylene oxide) (PEO‐PPO‐PEO) block copolymers, P123 and F127 (same mol wt of PPO but different % PEO) in aqueous solution in the absence and presence of salts as well as ionic surfactants were mainly examined by dynamic light scattering (DLS). The study is further supported by cloud point and viscosity measurements. The change in cloud point (CP), as well as the size of micelles in aqueous solution in presence of salts obeys the Hofmeister lyotropic series. Addition of both cationic cetylpyridinium chloride (CPC) and anionic sodium dodecylsulfate (SDS) surfactants in the aqueous solution of P123 show initial decrease of micellar size from 20 nm to nearly 7 nm and then increasing with a double relaxation mode, further in the presence of NaCl this double relaxation mode vanishes. The effect of surfactant on F127, which has much bigger hydrophilic part is different than P123 and have no double relaxation. The relaxation time distributions is obtained using the Laplace inversion routine REPES. Two relaxation modes for P123 are explained on the bases of Pluronic rich mixed micelles containing ionic surfactants and the other smaller, predominantly surfactant rich micelles domains.  相似文献   

8.
Importance of micellar kinetics in relation to technological processes   总被引:5,自引:0,他引:5  
The association of many classes of surface-active molecules into micellar aggregates is a well-known phenomenon. Micelles are in dynamic equilibrium, constantly disintegrating and reforming. This relaxation process is characterized by the slow micellar relaxation time constant, tau(2), which is directly related to the micellar stability. Theories of the kinetics of micelle formation and disintegration have been discussed to identify the gaps in our complete understanding of this kinetic process. The micellar stability of sodium dodecyl sulfate micelles has been shown to significantly influence technological processes involving a rapid increase in interfacial area, such as foaming, wetting, emulsification, solubilization, and detergency. First, the available monomers adsorb onto the freshly created interface. Then, additional monomers must be provided by the breakup of micelles. Especially when the free monomer concentration is low, which is the case for many nonionic surfactant solutions, the micellar breakup time is a rate-limiting step in the supply of monomers. The Center for Surface Science & Engineering at the University of Florida has developed methods using stopped flow and pressure jump with optical detection to determine the slow relaxation time of micelles of nonionic surfactants. The results showed that the ionic surfactants such as SDS exhibit slow relaxation times in the range from milliseconds to seconds, whereas nonionic surfactants exhibit slow relaxation times in the range from seconds (for Triton X-100) to minutes (for polyoxyethylene alkyl ethers). The slow relaxation times are much longer for nonionic surfactants than for ionic surfactants, because of the absence of ionic repulsion between the head groups. The observed relaxation times showed a direct correlation with dynamic surface tension and foaming experiments. In conclusion, relaxation time data of surfactant solutions correlate with the dynamic properties of the micellar solutions. Moreover, the results suggest that appropriate micelles with specific stability or tau(2) can be designed by controlling the surfactant structure, concentration, and physicochemical conditions (e.g., salt concentration, temperature, and pressure). One can also tailor micelles by mixing anionic/cationic or ionic/nonionic surfactants for a desired stability to control various technological processes.  相似文献   

9.
Solubilization of water and aqueous NaCl solutions in mixed reverse micellar systems of anionic surfactant AOT and nonionic surfactants in n-heptane was studied. It was found that the maximum solubilization capacity of water was higher in the presence of certain concentrations of NaCl electrolyte, and these concentrations increased with the increase of nonionic surfactant content and their EO chain length. Soluibilization capacity was enhanced by mixing AOT with nonionic surfactants. The observed phenomena were interpreted in terms of the stability of the interfacial film of reverse micellar microdroplet and the packing parameter of the surfactant that formed mixed reverse micelles.  相似文献   

10.
Specific features of surfactant diffusion in micellar systems are described in terms of mobility, i.e., the limiting velocity of a particle under the action of a unit force. Micellar solutions of nonionic and ionic surfactants are analyzed. A relation is established between average surfactant mobility and the mobilities of individual particles. Although micelles have a lower mobility than monomers have, the average mobility of surfactants is shown to increase rather than decrease upon micellization. In parallel, formulas describing diffusion coefficients are derived, with part of the formulas having been available in the literature.  相似文献   

11.
Cyclic voltammetry (CV) and viscosity measurements have been employed to study the aggregation behavior of mixed micellar systems of anionic surfactant (dioctyl sulfosuccinate sodium salt, AOT) with conventional nonionic surfactants such as Brij 35/TritonX-100/Tween 20/Tween 80/Myrj 45 and two triblock copolymers (L64 and F68). Critical micelle concentration (cmc) values have been determined for various micellar systems from CV measurements using 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as an electroactive probe at 25 °C. Diffusion coefficient (D) has been evaluated from Randles–Sevcik equation which showed an overall decrease for most of the binary systems. The negative values of interaction parameters (β) obtained from regular solution theory suggest the synergistic behavior in all the binary systems except AOT + Tween 80 mixtures. The mixed systems of AOT with triblock copolymers showed stronger synergistic interactions than that of mixed systems of AOT with nonionic surfactants. A comparative evaluation of mixed systems of anionic surfactants AOT and sodium dodecyl sulfate with Myrj 45 and AOT + L64 and F68 has been made on the basis of different micellar parameters and structural properties of surfactants. Viscosity measurements also show similar type of interactions in the mixed micelles.  相似文献   

12.
Small-angle neutron scattering studies were used to investigate the effect of adding an alcohol ethoxylate nonionic surfactant (d-C12E20) to aqueous solutions of a cationic surfactant, erucyl bis(hydroxyethyl) methylammonium chloride (EHAC), with and without salt (KCl). The systematic use of contrast-matching, by alternately highlighting or hiding one of the surfactants, confirms that mixed micelles are formed. In salt-free solutions, mixed spherical micelles are formed and a core-shell model combined with a Hayter-Penfold potential was used to describe the data. The core radius is dominated by the EHAC tails and the outer radius determined by the ethoxylate headgroups of the nonionic surfactant. Addition of KCl promotes micellar growth; however, results of varying the solvent contrast revealed that when the nonionic surfactant is incorporated into the wormlike structure micellar breaking is promoted. Thus, mixed wormlike micelles with shorter contour lengths compared to the pure EHAC worms are formed.  相似文献   

13.
The evolution of the microstructure and composition occurring in the aqueous solutions of di-alkyl chain cationic/nonionic surfactant mixtures has been studied in detail using small angle neutron scattering, SANS. For all the systems studied we observe an evolution from a predominantly lamellar phase, for solutions rich in di-alkyl chain cationic surfactant, to mixed cationic/nonionic micelles, for solutions rich in the nonionic surfactant. At intermediate solution compositions there is a region of coexistence of lamellar and micellar phases, where the relative amounts change with solution composition. A number of different di-alkyl chain cationic surfactants, DHDAB, 2HT, DHTAC, DHTA methyl sulfate, and DISDA methyl sulfate, and nonionic surfactants, C12E12 and C12E23, are investigated. For these systems the differences in phase behavior is discussed, and for the mixture DHDAB/C12E12 a direct comparison with theoretical predictions of phase behavior is made. It is shown that the phase separation that can occur in these mixed systems is induced by a depletion force arising from the micellar component, and that the size and volume fraction of the micelles are critical factors.  相似文献   

14.
The clouding behavior, i.e., formation of phase separation at elevated temperature (the temperature being known as cloud point (CP)), of three amphiphilic drugs, amitriptyline (AMT), clomipramine (CLP) and imipramine (IMP) hydrochlorides in the presence of various additives, like cationic surfactants (conventional and gemini), nonionic surfactants, bile salts, anionic hydrotropes, sodium salts of fatty acids and cyclodextrin has been investigated. These additives are generally used as drug delivery systems. The drugs used are tricyclic antidepressants. All the surfactants increase the CP of mixed micelles formed by cationic (conventional and gemini) and nonionic surfactants. Hydrotropes, bile salts and fatty acid salts, when added in low concentrations, increase the CP, whereas at high concentrations, they decrease it. β-Cyclodextrin behaves as simple sugar and decreases the CP of the drug solutions.  相似文献   

15.
Lattice Monte Carlo simulations are used to study the effect of nonionic surfactant concentration and CO2 density on the micellization and phase equilibria of supercritical CO2/surfactant systems. The interaction parameter for carbon dioxide is obtained by matching the critical temperature of the model fluid with the experimental critical temperature. Various properties such as the critical micelle concentration and the size, shape, and structure ofmicelles are calculated, and the phase diagram in the surfactant concentration-CO2 density space is constructed. On increasing the CO2 density, we find an increase in the critical micelle concentration and a decrease in the micellar size; this is consistent with existing experimental results. The variation of the micellar shape and structure with CO2 density shows that the micelles are spherical and that the extension of the micellar core increases with increasing micellar size, while the extension of the micellar corona increases with increasing CO2 density. The predicted phase diagram is in qualitative agreement with experimental phase diagrams for nonionic surfactants in carbon dioxide.  相似文献   

16.
Since the aggregation number of micelles always grows with concentration, and, in some cases this dependence is noticeable even for spherical micelles, there is a need to revise the theory of micellization, in which the aggregation number is assumed to be constant. This work reformulates the theory of diffusion of nonionic surfactants in micellar solutions with regard to the variability of the aggregation number. A new formula, which expresses the diffusion coefficient of a surfactant via the diffusion coefficients of monomers and micelles, contains an additional factor capable of increasing the diffusion coefficient with the surfactant concentration. However, this factor is not overly strong, and the “old” part of the formula acts in the opposite direction; as a result, the conventional decrease in the diffusion coefficient of a nonionic surfactant remains prevailing. The analytical consideration has been supplemented with numerical calculations, the results of which are presented in the tables.  相似文献   

17.
A series of triblock nonionic surfactants with different Propylene oxide and ethylene oxide chain lengths were synthesized. The triblock nonionic surfactants and poly(ethylene glycols) with different molecular weight were used, to find the effects of polymer chain length and size of the micelles on the cloud point of the surfactants. Two possible models are considered on the basis of cloud point changes of the solutions, to describe the polymer- surfactant interactions. One model suggests that flocculation depletion for the polymer chains exist between two regular micelles. This provides the driving force for the neighboring micelles to approach each other and destabilize the colloidal system. The flocculation effect is more important for polymers with a shorter chain block the approach of the micelles, since there is no typical polymer-surfactant association formed but just simple small molecule associations in which the steric and solvation effects of the polymer chains make the inter-micelles interactions repulsive. The other model considers that intra-chain micelles of polysoap are formed among the surfactant monomers and long polymer chains. The bridging attraction between two intra-chain micelles in such structures can enhance the collisions among the micelles, due to the exchange of amphiphilic monomers among the neighboring micelles.  相似文献   

18.
反胶束是两亲分子在非极性溶剂中形成的一种有序组合体,在医药、化工、采油、胶束催化及酶催化等领域中有重要应用.与胶束溶液相比,人们对反胶束的形成与结构的了解至今仍不充分.特别是对于由混合表面活性剂形成的反胶束的研究几乎无人涉及.本文采用动态光散射、电导及荧光光谱等手段对阴离子表面活性剂AOT与非离子表面活性剂形成的混合反胶束进行了研究,旨在探讨利用表面活性剂的复配来调节和控制反胶束的结构和性能.亚实验部分二异辛基磺化琉璃酸钠(AOT,Sigma公司);Brij30为含4个氧乙烯基(EO基)的十二碳醇(AcrosOrgani…  相似文献   

19.
添加剂对非离子十二烷基聚氧乙烯聚氧丙烯醚浊点的影响   总被引:12,自引:2,他引:10  
测定了无机盐、单元及多元醇、有机酸及离子型表面活性剂对3种非离子表面活性剂十二烷基聚氧乙烯聚氧丙烯醚C12H25(EO)m(PO)nH(LS36,m=3,n=6;LS45,m=4,n=5;LS54,m=5,n=4)浊点的影响.  相似文献   

20.
The association of many classes of surface active molecules into micellar aggregates is a well-known phenomenon. Micelles are often drawn as static structures of spherical aggregates of oriented molecules. However, micelles are in dynamic equilibrium with surfactant monomers in the bulk solution constantly being exchanged with the surfactant molecules in the micelles. Additionally, the micelles themselves are continuously disintegrating and reforming. The first process is a fast relaxation process typically referred to as τ1. The latter is a slow relaxation process with relaxation time τ2. Thus, τ2 represents the entire process of the formation or disintegration of a micelle. The slow relaxation time is directly correlated with the average lifetime of a micelle, and hence the molecular packing in the micelle, which in turn relates to the stability of a micelle. It was shown earlier by Shah and coworkers that the stability of sodium dodecyl sulfate (SDS) micelles plays an important role in various technological processes involving an increase in interfacial area, such as foaming, wetting, emulsification, solubilization and detergency. The slow relaxation time of SDS micelles, as measured by pressure-jump and temperature-jump techniques was in the range of 10−4–101 s depending on the surfactant concentration. A maximum relaxation time and thus a maximum micellar stability was found at 200 mM SDS, corresponding to the least foaming, largest bubble size, longest wetting time of textile, largest emulsion droplet size and the most rapid solubilization of oil. These results are explained in terms of the flux of surfactant monomers from the bulk to the interface, which determines the dynamic surface tension. The more stable micelles lead to less monomer flux and hence to a higher dynamic surface tension. As the SDS concentration increases, the micelles become more rigid and stable as a result of the decrease in intermicellar distance. The smaller the intermicellar distance, the larger the Coulombic repulsive forces between the micelles leading to enhanced stability of micelles (presumably by increased counterion binding to the micelles). The Center for Surface Science & Engineering at the University of Florida has developed methods using stopped-flow and pressure-jump with optical detection to determine the slow relaxation time of micelles of nonionic surfactants. The results show relaxation times τ2 in the range of seconds for Triton X-100 to minutes for polyoxyethylene alkyl ethers. The slow relaxation times are much longer for nonionic surfactants than for ionic surfactants, because of the absence of ionic repulsion between the head groups. The observed relaxation time τ2 was related to dynamic surface tension and foaming experiments. A slow break-up of micelles, (i.e. a long relaxation time τ2) corresponds to a high dynamic surface tension and low foamability, whereas a fast break-up of micelles, leads to a lower dynamic surface tension and higher foamability. In conclusion, micellar stability and thus the micellar break-up time is a key factor in controlling technological processes involving a rapid increase in interfacial area, such as foaming, wetting, emulsification and oil solubilization. First, the available monomers adsorb onto the freshly created interface. Then, additional monomers must be provided by the break-up of micelles. Especially when the free monomer concentration is low, as indicated by a low CMC, the micellar break-up time is a rate limiting step in the supply of monomers, which is the case for many nonionic surfactant solutions. Therefore, relaxation time data of surfactant solutions enables us to predict the performance of a given surfactant solution. Moreover, the results suggest that one can design appropriate micelles with specific stability or τ2 by controlling the surfactant structure, concentration and physico-chemical conditions, as well as by mixing anionic/cationic or ionic/nonionic surfactants for a desired technological application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号