首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The crystal structures of a pair of cis and trans isomers of the macrocyclic chloro­penta­amine title complex, as their tetra­chloro­zincate(II) salts, [CoCl(C11H27N5)][ZnCl4], are re­ported. The two distinct isomeric forms lead to significant variations in the Co—N bond lengths and, furthermore, hydrogen bonding between the complex ions is influenced by the folded (cis) or planar (trans) conformations of the coordinated ligand.  相似文献   

2.
The pendent‐arm macrocyclic hexa­amine trans‐6,13‐dimethyl‐1,4,8,11‐tetra­aza­cyclo­tetra­decane‐6,13‐diamine (L) may coordinate in tetra‐, penta‐ or hexa­dentate modes, depending on the metal ion and the synthetic procedure. We report here the crystal structures of two pseudo‐octa­hedral cobalt(III) complexes of L, namely sodium trans‐cyano­(trans‐6,13‐dimethyl‐1,4,8,11‐tetra­aza­cyclo­tetra­decane‐6,13‐diamine)cobalt(III) triperchlorate, Na[Co(CN)(C13H30N6)](ClO4)3 or Na{trans‐[CoL(CN)]}(ClO4)3, (I), where L is coordinated as a penta­dentate ligand, and trans‐dicyano­(trans‐6,13‐dimethyl‐1,4,8,11‐tetra­aza­cyclo­tetra­decane‐6,13‐diamine)cobalt(III) trans‐dicyano­(trans‐6,13‐dimethyl‐1,4,8,11‐tetra­aza­cyclo­tetra­decane‐6,13‐diaminium)cobalt(III) tetra­perchlorate tetra­hydrate, [Co(CN)2(C14H32N6)][Co(CN)2(C14H30N6)](ClO4)4·4H2O or trans‐[CoL(CN)2]trans‐[Co(H2L)(CN)2](ClO4)4·4H2O, (II), where the ligand binds in a tetra­dentate mode, with the remaining coordination sites being filled by C‐­bound cyano ligands. In (I), the secondary amine Co—N bond lengths lie within the range 1.944 (3)–1.969 (3) Å, while the trans influence of the cyano ligand lengthens the Co—N bond length of the coordinated primary amine [Co—N = 1.986 (3) Å]. The Co—CN bond length is 1.899 (3) Å. The complex cations in (II) are each located on centres of symmetry. The Co—N bond lengths in both cations are somewhat longer than in (I) and span a narrow range [1.972 (3)–1.982 (3) Å]. The two independent Co—CN bond lengths are similar [1.918 (4) and 1.926 (4) Å] but significantly longer than in the structure of (I), again a consequence of the trans influence of each cyano ligand.  相似文献   

3.
The title compound, [Cu(ClO4)(C5H6N2)2(C12H12N2)]ClO4, was prepared by in situ partial ligand substitution between 3‐amino­pyridine and 4,4′‐dimethyl‐2,2′‐bipyridine at room temperature. The central copper(II) ion is five‐coordinated by one bidentate 4,4′‐dimethyl‐2,2′‐bipyridine mol­ecule, two monodentate pyridine‐coordinated 3‐amino­pyridine mol­ecules and one apical O atom from the perchlorate counter‐ion. Inter­molecular N—H⋯O and C—H⋯O hydrogen‐bonding inter­actions form a hydrogen‐bond‐sustained network.  相似文献   

4.
The title compound, [Ni2(C8H4O4)(C10H24N4)2(H2O)2](ClO4)2, contains two independent octahedral NiII centres with trans‐NiN4O2 chromophores. The bridging benzene­dicarboxyl­ate ligand is bonded to the two Ni atoms, each via one O atom of each carboxyl­ate, while the other O atom participates in an intramolecular N—H?O hydrogen bond, forming an S(6) motif. The cations are linked to the perchlorate anions via O—H?O and N—H?O hydrogen bonds [O?O 2.904 (6) and 2.898 (6) Å; O—H?O 158 (6) and 165 (6)°; N?O 3.175 (7) and 3.116 (7) Å; N—H?O 168 and 166°] to form molecular ladders. These ladders are linked by further O—H?O and N—H?O hydrogen bonds [O?O 2.717 (6) and 2.730 (5) Å; O—H?O 170 (4) and 163 (6)°; N?O 3.373 (7) and 3.253 (7) Å; N—H?O 163 and 167°] to form a continuous three‐dimensional framework. The perchlorate anions both participate in three hydrogen bonds, and both are thus fully ordered.  相似文献   

5.
In the title compound, [Co(C18H37N4O3)](ClO4)Cl·H2O, the CoIII ion has a distorted octahedral geometry, with four N atoms and two O atoms constituting the coordination sphere. The crystal structure is stabilized by a three‐dimensional network of hydrogen bonds.  相似文献   

6.
In 3,4‐di‐2‐pyridyl‐1,2,5‐oxadiazole (dpo), C12H8N4O, each mol­ecule resides on a twofold axis and inter­acts with eight neighbours via four C—H⋯N and four C—H⋯O inter­actions to generate a three‐dimensional hydrogen‐bonded architecture. In the perchlorate analogue, 2‐[3‐(2‐pyrid­yl)‐1,2,5‐oxadiazol‐4‐yl]pyridinium perchlorate, C12H9N4O+·ClO4 or [Hdpo]ClO4, the [Hdpo]+ cation is bisected by a crystallographic mirror plane, and the additional H atom in the cation is shared by the two pyridyl N atoms to form a symmetrical intra­molecular N⋯H⋯N hydrogen bond. The cations and perchlorate anions are linked through C—H⋯O hydrogen bonds and π–π stacking inter­actions to form one‐dimensional tubes along the b‐axis direction.  相似文献   

7.
In the title compound, [Co(C5H3N2O4)2(H2O)2]·C10H8N2, the Co atom is trans‐coordinated by two pairs of N and O atoms from two monoanionic 4,5‐di­carboxy­imidazole ligands, and by two O atoms from two coordinated water mol­ecules, in a distorted octahedral geometry. The 4,4′‐bi­pyridine solvent molecule is not involved in coordination but is linked by an N—H⋯N hydrogen bond to the neutral [Co(C5H3N2O4)2(H2O)2] mol­ecule. Both mol­ecules are located on inversion centers. The crystal packing is stabilized by N—H⋯N and O—H⋯O hydrogen bonds, which produce a three‐dimensional hydrogen‐bonded network. Offset π–π stacking interactions between the pyridine rings of adjacent 4,4′‐bi­pyridine molecules were observed, with a face‐to‐face distance of 3.345 (1) Å.  相似文献   

8.
In the title salt, 1,3‐bis­{[2‐(2‐pyridinio)eth­yl][2‐(2‐pyrid­yl)ethyl]amino}benzene diperchlorate dihydrate, C34H38N62+·2ClO4·2H2O, the cation contains two ethyl­pyrid­yl and two ethyl­pyridinium pendant pairs anchored to the two N atoms of 1,3‐phenyl­enediamine. The pyrid­yl and pyridinium N atoms are flanked by a mol­ecule of water through strong hydrogen‐bonding inter­actions [N—H⋯O = 2.762 (6) and 2.758 (6) Å, and O—H⋯N = 2.834 (6) and 2.839 (6) Å]. The water mol­ecules have weak hydrogen‐bonding inter­actions with the perchlorate anions as well. One of the perchlorate anions is severely disordered.  相似文献   

9.
The structure of the title compound, [Cu2(C12H24N4O2)(C3H4N2)2(CH4O)2](ClO4)2 or [Cu2(dmoxpn)(HIm)2(CH3OH)2](ClO4)2, where dmoxpn is the dianion of N,N′‐bis­[3‐(dimethyl­amino)prop­yl]oxamide and HIm is imidazole, consists of a centrosymmetric trans‐oxamidate‐bridged copper(II) binuclear cation, having an inversion centre at the mid‐point of the central C—C bond, and two perchlorate anions. The CuII atom has square‐pyramidal coordination geometry involving two N atoms and an O atom from the dmoxpn ligand, an N atom from an imidazole ring, and an O atom from a methanol mol­ecule. The crystal structure is stabilized by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds and imidazole π–π stacking inter­actions to form a three‐dimensional supra­molecular array.  相似文献   

10.
In the first title salt, [Cu(C12H8N2)2(C5H10N2Se)](ClO4)2, the CuII centre occupies a distorted trigonal–bipyramidal environment defined by four N donors from two 1,10‐phenanthroline (phen) ligands and by the Se donor of a 1,3‐dimethylimidazolidine‐2‐selone ligand, with the equatorial plane defined by the Se and by two N donors from different phen ligands and the axial sites occupied by the two remaining N donors, one from each phen ligand. The Cu—N distances span the range 1.980 (10)–2.114 (11) Å and the Cu—Se distance is 2.491 (3) Å. Intermolecular π–π contacts between imidazolidine rings and the central rings of phen ligands generate chains of cations. In the second salt, [Cu(C10H8N2)2(C3H6N2S)](ClO4)2, the CuII centre occupies a similar distorted trigonal–bipyramidal environment comprising four N donors from two 2,2′‐bipyridyl (bipy) ligands and an S donor from an imidazolidine‐2‐thione ligand. The equatorial plane is defined by the S donor and two N donors from different bipy ligands. The Cu—N distances span the range 1.984 (6)–2.069 (7) Å and the Cu—S distance is 2.366 (3) Å. Intermolecular π–π contacts between imidazolidine and pyridyl rings form chains of cations. A major difference between the two structures is due to the presence in the second complex of two N—H...O hydrogen bonds linking the imidazolidine N—H hydrogen‐bond donors to perchlorate O‐atom acceptors.  相似文献   

11.
The novel μ‐oxo‐diiron complex [Fe2O(BPHPA)2](ClO4)4 [BPHPA is (6‐hydroxy­methyl‐2‐pyridyl­methyl)­bis(2‐pyridyl­methyl)­amine, C19H20N4O], contains a binuclear centrosymmetric [Fe2O(BPHPA)2]4+ cation (the bridging O atom lies on an inversion centre) and four perchlorate anions. Each iron ion is coordinated by four N atoms [Fe—N = 2.117 (5)–2.196 (5) Å] and one O atom [Fe—O = 2.052 (5) Å] from a BPHPA ligand, and by one bridging oxo atom [Fe—O = 1.7896 (9) Å], forming a distorted octahedron. There are hydrogen bonds between the hydroxy group and perchlorate O atoms [O—H·O = 2.654 (7) Å].  相似文献   

12.
The title compound, [Cu(ClO4)2(C4H9N3O2)2][Cu(C4H9N3O2)2(CH4O)2](ClO4)2·2CH3OH, comprises two independent CuII species lying on different inversion sites. In the Cu complexes, a distorted octa­hedral geometry arises (from basic square‐planar N4 coordination) from the weak coordination of two perchlorate ions (as Cu—O) in one species and two methanol mol­ecules in the other (also as Cu—O). Inter­actions between the O atoms of the perchlorate anions or methanol groups and the imide or amine NH groups afford an extensive inter­molecular hydrogen‐bonding network.  相似文献   

13.
The title compound, [Co(C5H9N)4(H2O)2](ClO4)2, crystallizes in the monoclinic space group C2/m. The cation has space‐group‐imposed 2/m symmetry, while the perchlorate ion is disordered about a mirror plane. The two slightly non‐equivalent Co—C bonds [1.900 (3) and 1.911 (3) Å] form a rectangular plane, with a C—Co—C bond angle of 86.83 (11)°, and the linear O—Co—O C2 axis is perpendicular to this plane. The C[triple‐bond]N bond lengths are 1.141 (4) Å and the Co—C[triple‐bond]N and C[triple‐bond]N—C angles average 175.5 (4)°. The perchlorate counter‐ions are hydrogen bonded to the water molecules. The title compound is the first example of four alkyl isocyanide ligands coordinating CoII upon initial reaction of Co(ClO4)2·6H2O/EtOH with alkyl isocyanide. In all other known examples, five alkyl isocyanide molecules are coordinated, as in [(RNC)5Co—Co(CNR)5](ClO4)4 (R = Me, Et, CHMe2, CH2Ph, C4H9n or C6H11) or [Co(CNC8H17t)5](ClO4)2. This complex, therefore, is unique and somewhat unexpected.  相似文献   

14.
The structures of the diastereoisomers Λ(+)578‐, (I), and Δ(−)578‐bis(ethane‐1,2‐diamine)[β‐ethyl (S)‐aspartato‐κ2N,O1]cobalt(III) bis(perchlorate) monohydrate, (II), both [Co(C6H10N2O4)(C2H8N2)2](ClO4)2·H2O, are compared. In both structures, the ester group of the amino acid side chain is engaged only in intramolecular hydrogen bonding to coordinated amine groups. This interaction is stronger in (I) and correlates with previously observed diastereoisomeric equilibrium ratios for related metal complex systems in aqueous media. The two perchlorate anions of (II) are located on twofold axes. Both perchlorates in (I) and one of the perchlorates in (II) are affected by disorder. Both structures exhibit extensive three‐dimensional hydrogen‐bonding networks.  相似文献   

15.
Cyclam derivatives and their metal complexes have been found to exhibit an anti‐HIV effect and stimulate the activity of stem cells from bone marrow. The strength of their binding to the CXCR4 receptor correlates with anti‐HIV and stem‐cell activities. Knowledge of the conformation and crystal packing of various macrocyclic metal complexes has become important in developing new effective anti‐HIV drugs. The synthesis and preparation of single crystals of a new Cu2+‐doped macrocyclic compound, (3,14‐diethyl‐2,6,13,17‐tetraazatricyclo[16.4.0.07,12]docosane)copper(II) bis(perchlorate)–3,14‐diethyl‐2,13‐diaza‐6,17‐diazoniatricyclo[16.4.0.07,12]docosane bis(perchlorate) (0.69/0.31), {[Cu(C22H44N4)](ClO4)2}0.69·(C22H46N42+·2ClO4?)0.31, is reported. Characterization by X‐ray diffraction analysis shows that the asymmetric unit contains half of a centrosymmetric molecule. The macrocyclic ligand in the compound adopts the most stable trans‐III conformation. The Cu—N distances of 2.015 (3) and 2.047 (3) Å are normal, but the long axial Cu—O bond of 2.795 (3) Å may be due to a combination of the Jahn–Teller effect and the strong in‐plane ligand field. The crystal structure is stabilized by hydrogen bonding between secondary N—H groups, the N atoms of the macrocycle and the O atoms of the perchlorate anions. Hirshfeld surface analysis with 2D (two‐dimensional) fingerprint plots indicates that the main contributions to the crystal packing are from H…H (58.0%) and H…O/O…H (41.9%) interactions. Electron paramagnetic resonance (EPR) properties are also described.  相似文献   

16.
The crystallization behavior of the title compound, [Co(C2H8N2)3](C2O4)(ClO4)·2H2O, has been studied in order to evaluate the effect of the counter‐anion on the crystalline structures of [Co(en)3](C2O4X (en = ethyl­enedi­amine). Two‐dimensional intermolecular hydrogen‐bonding networks are formed between the amine protons of the [Co(en)3]3+ cations and the O atoms of the oxalate anions. Perchlorate and water mol­ecules fill in the channels between the two‐dimensional networks and form hydrogen‐bonding interactions with the two‐dimensional layers, thus constructing a three‐dimensional hydrogen‐bonding network.  相似文献   

17.
The title compound, [Co(C7H5O3)2(C6H6N2O)2(H2O)2], forms a three‐dimensional hydrogen‐bonded supramolecular structure. The CoII ion is in an octahedral coordination environment comprising two pyridyl N atoms, two carboxylate O atoms and two O atoms from water molecules. Intermolecular N—H...O and O—H...O hydrogen bonds produce R22(8), R22(12) and R22(14) rings, which lead to two‐dimensional chains. An extensive three‐dimensional supramolecular network of C—H...O, N—H...O and O—H...O hydrogen bonds and C—H...π interactions is responsible for crystal structure stabilization. This study is an example of the construction of a supramolecular assembly based on hydrogen bonds in mixed‐ligand metal complexes.  相似文献   

18.
The title compound, C19H14N5+·ClO4?·H2O, contains planar C19H14N5+ cations, perchlorate anions and water mol­ecules. The two closest parallel cations (plane‐to‐plane distance of 3.41 Å), together with two neighbouring perchlorate anions and two water mol­ecules, form an electrically neutral quasi‐dimeric unit. Two acidic H atoms of the cation, both H atoms of the water mol­ecule, the N atoms of the imidazole rings and three of the four O atoms of the perchlorate anion are involved in the hydrogen‐bonding network within the dimeric unit. The remaining third acidic H atom of the imidazole rings and the water mol­ecules complete a two‐dimensional network of hydrogen bonds, thus forming puckered layers of dimers. The angle between the planes of two neighbouring dimeric units in the same layer is 33.25 (3)°.  相似文献   

19.
The title compound, [Co(C29H24N2O2)(C4H6N2)2]ClO4, contains an optically active tetradentate Schiff base ligand in an equatorial plane and two 1‐methyl­imidazole ligands at apical positions. The central N—C—C—N chelate ring of the Schiff base ligand has an envelope structure with a λ conformation, which is different from the solution structure predicted from circular dichroism and 1H NMR spectra.  相似文献   

20.
The title pendent‐arm macrocyclic hexa­amine ligand binds stereospecifically in a hexadentate manner, and we report here its isomorphous NiII and ZnII complexes (both as perchlorate salts), namely (cis‐6,13‐di­methyl‐1,4,8,11‐tetra­aza­cyclo­tetra­decane‐6,13‐di­amine‐κ6N)­nickel(II) di­per­chlorate, [Ni(C12H30N6)]­­(ClO4)2, and (cis‐6,13‐di­methyl‐1,4,8,11‐tetraaza‐cyclo­tetra­decane‐6,13‐di­amine‐κ6N)­zinc(II) di­per­chlorate, [Zn(C12H30N6)]­(ClO4)2. Distortion of the N—M—N valence angles from their ideal octahedral values becomes more pronounced with increasing metal‐ion size and the present results are compared with other structures of this ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号