首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The energy-density functional approach and jellium-like models are used to examine two important electronic properties of metal (Li, Na, K) clusters: their shell and supershell structures, and the behaviour of plasmon energies with increasing cluster sizes. A comparative study is made between predictions of the usual jellium model and those of the pseudo-jellium model where pseudohamiltonians are used.  相似文献   

2.
Photoabsorption spectra have been measured for free neutral sodium clusters containing fromN=3 to 40 atoms. In the size range ofN≈3 to 5, a transition occurs from molecule-like absorption to collective excitations of the valence electrons. ForN≈6 to 12, the data are well described by an ellipsoidal shell model. In open-shell clusters, the multiple surface plasma resonances expected for spheroidal or ellipsoidal shapes are observed. The experimental resonance positions provide a sensitive measurement of the cluster distortions. ForN?13, the per atom strength of these collective resonances is reduced; this may be due to peak fragmentation caused by interaction between the surface plasmon and nearby single-electron resonances. In three distinct wavelength regions, one of which corresponds to the position of the Na atom “D-lines”, additional absorption is seen in the spectra of all investigated clusters.  相似文献   

3.
Small sodium and silver particles were generated on dielectric substrates like LiF, quartz and sapphire under ultrahigh vacuum conditions. The optical transmission spectra of the clusters were measured as a function of cluster size and shape, for low and high substrate temperatures as well as for s- and p- polarization of the incident light. Excitation of dipolar surface plasmon oscillations in the directions normal and parallel to the substrate surface could be identified. Furthermore, optical spectra for Na and Ag clusters were calculated with the classical Mie theory. The measured spectra vary strongly if the experimental conditions are changed and can be exploited, for example, to characterize the particles with regard to their size and shape. In particular, the axial ratio of the spheroidal clusters could be determined. Its value is considerably different for the two investigated metals and depends on the substrate material. Furthermore, the temperature of the substrate has a pronounced influence on the shape of the particles. At low temperature of T=100 K two-dimensional island growth is predominant. The particles extend only little in the direction perpendicular to the surface and coalesce readily at small coverage of metal atoms. In contrast, the clusters are truly three-dimensional at T=300 K. At this stage, sodium particles still exhibit a rather small axial ratio whereas silver clusters appear almost spherical. Thus, measurements of the optical spectra permit direct in situ monitoring of cluster growth during the nucleation of adsorbed atoms and of temperature induced shape variations. In addition to investigations of the shape of the particles, the quadrupolar surface plasmon mode was observed for Ag clusters.  相似文献   

4.
We propose a scheme for ultrafast real-time imaging of laser-induced collective electron oscillations (Mie plasmons) in gas phase metal clusters by interferometrically stable scanning of two intense few-cycle optical laser pulses. The feasibility of our nonlinear spectral interferometry method with experimentally accessible observables is tested in a theoretical case study on simple-metal clusters (Na(147)). The results show that the plasmon period and lifetime as well as the phase and relative amplitude of the collective electron motion can be extracted with sub-fs resolution. The access to nonlinear response effects, as the demonstrated increase of the plasmon lifetime with laser intensity due to ionization-induced contraction of the electron cloud, opens up vast opportunities for interrogating ultrafast many-particle dynamics in nanosystems under strong laser fields with unprecedented resolution.  相似文献   

5.
The electronic structure of free aluminum clusters with ~3-4 nm radius has been investigated using synchrotron radiation-based photoelectron and Auger electron spectroscopy. A beam of free clusters has been produced using a gas-aggregation source. The 2p core level and the valence band have been probed. Photoelectron energy-loss features corresponding to both bulk and surface plasmon excitation following photoionization of the 2p level have been observed, and the excitation energies have been derived. In contrast to some expectations, the loss features have been detected at energies very close to those of the macroscopic solid. The results are discussed from the point of view of metallic properties in nanoparticles with a finite number of constituent atoms.  相似文献   

6.
Na clusters bound to mica surfaces have been irradiated with pulsed and cw visible laser light. Kinetic energy and angular distributions of the Na atoms desorbing from the clusters have been determined using cw two-photon laser-induced fluorescence detection. In addition the dependence of the desorption rate on laser power, wavelength and polarization has been measured. The most probable kinetic energyE kin of the photodesorbed atoms at the surface temperatureT S =300 K was found to beE kin=18±5 meV, independent of laser irradiance (3 µJ/cm2...20 mJ/cm2) and wavelength (450 nm, 505 nm, 658 nm). With increasing orientation angle between detection axis and surface normal (0°≦Θ≦90°)E kin was observed to decrease slightly, while it was nearly independent of surface temperature betweenT S =30 K andT S =300 K. Also, with increasing radius of the Na clusters the desorbing Na atoms slowed down. The angular distribution of the Na atoms was of cos2-type with respect to the surface normal. These observations suggest that laser-induced desorption of Na from Na clusters bound to mica surfaces involves an initial rate-limiting step of direct surface plasmon excitation followed by a final step of delayed thermal desorption.  相似文献   

7.
The target of this investigation is to characterize by a recently developed methodology, the main features of the first solvation shells of alkaline ions in nonpolar environments due to aromatic rings, which is of crucial relevance to understand the selectivity of several biochemical phenomena. We employ an evolutionary algorithm to obtain putative global minima of clusters formed with alkali-ions (M(+)) solvated with n benzene (Bz) molecules, i.e., M(+)-(Bz)(n). The global intermolecular interaction has been decomposed in Bz-Bz and in M(+)-Bz contributions, using a potential model based on different decompositions of the molecular polarizability of benzene. Specifically, we have studied the microsolvation of Na(+), K(+), and Cs(+) with benzene molecules. Microsolvation clusters up to n = 21 benzene molecules are involved in this work and the achieved global minimum structures are reported and discussed in detail. We observe that the number of benzene molecules allocated in the first solvation shell increases with the size of the cation, showing three molecules for Na(+) and four for both K(+) and Cs(+). The structure of this solvation shell keeps approximately unchanged as more benzene molecules are added to the cluster, which is independent of the ion. Particularly stable structures, so-called "magic numbers", arise for various nuclearities of the three alkali-ions. Strong "magic numbers" appear at n = 2, 3, and 4 for Na(+), K(+), and Cs(+), respectively. In addition, another set of weaker "magic numbers" (three per alkali-ion) are reported for larger nuclearities.  相似文献   

8.
We report on the optical properties (absorption, Raman response) of thin and ultrathin phthalocyanine and amorphous silicon films with incorporated noble metal clusters. The metal clusters cause the typical absorption features originating from their surface plasmon resonance. In ultrathin films, due to the spatially close interface, the plasmon absorption may be displaced from its resonance frequency in the bulk, and its average position may be controlled by the average thickness of the ultrathin optical film. For example, we observe a shift of the plasmon resonance of silver clusters in amorphous silicon films (on fused silica) from 440 nm to 740 nm, when the silicon thickness increases from zero up to 9 nm. The deposition experiments are accompanied by investigations of the film structure, particularly in order to estimate the silver cluster diameter, which is around 3 nm or less.  相似文献   

9.
A delicate balance between competing and cooperating noncovalent interactions determines the three-dimensional structure of hydrated alkali-metal ion clusters. A critical factor influencing the balance reached is the internal energy content (or effective temperature) of the ion cluster. Cold cluster ions (approximately 50-150 K) have little internal energy, and enthalpic contributions have a greater influence on the relative population of low-lying minima. In clusters whose internal energy distributions correspond to temperatures approximately 250-500 K, entropic effects are expected to influence which structural isomers are present, favoring those where free energy has been minimized. Infrared photodissociation spectra of M(+)(H2O)(x=2-5) (approximately 250-500 K) are reported for M = Li, Na, K, and Cs to explore ion dependencies and entropic effects on the observed three-dimensional structure.  相似文献   

10.
In this paper we explore the effects of the electronic structure, the charge state, and the nature of energy distribution of isomers on the thermodynamic properties of sodium clusters. The focus of the work is to isolate the effects of these ingredients on thermodynamic behavior by choosing specific clusters. Toward this end we investigate Na(39) (-), Na(40), and Na(41) (+), which are the electronic closed shell systems which differ in number of atoms and charge state. We also examine Na(39), Na(39) (+), Na(40) (+), and Na(41) clusters having different charges of these clusters. Our density functional molecular dynamics simulations show that all electronic shell-closing clusters have similar melting temperature of approximately 310 K. Remarkably, it is observed that an addition of even one electron to Na(39) increases the melting temperature by about 40 K and makes the specific heat curve sharper. All the cationic clusters show broadened specific heat curves.  相似文献   

11.
The photoabsorption spectra of a continuous series of Na(n) clusters (n相似文献   

12.
Ab initio computed interaction forces are employed to describe the microsolvation of the A+2(2Sigma) (A=Li, Na, K) molecular ion in 4He clusters of small variable size. The minimum energy structures are obtained by performing energy minimization based on a genetic algorithm approach. The symmetry features of the collocation of solvent adatoms around the dimeric cation are analyzed in detail, showing that the selective growth of small clusters around the two sides of the ion during the solvation process is a feature common to all three dopants.  相似文献   

13.
Calorimetry measurements, performed by multicollision induced dissociation, have been used to probe the melting of a number of (NaCl)nNa+ clusters with n=22-37. The clusters anneal at 225-325 K and melt at 750-850 K. (NaCl)22Na+ and (NaCl)37Na+, which can adopt geometries that are perfect fragments of the bulk lattice melt at around 850 K. The other clusters, which (except for n=31) must have defects, melt at temperatures which are up to 100 K lower than the perfect nanocrystals. The internal energy distributions become bimodal near the melting temperature. This is the signature of slow dynamic phase coexistence where clusters spontaneously jump back and forth between the solid and liquid states with an average period that is longer than required for thermal equilibration. The jump frequency must be between 10(4) and 10(7) s(-1) for the bimodal distribution to be observable in our experiments. The (NaCl)nNa+ clusters can dissociate by an unusual thermally activated process where melting and freezing raise the internal energy to generate hot solid clusters that can sublime before they cool to the ambient temperature.  相似文献   

14.
周树兰  赵显  江向平  韩晓东 《结构化学》2012,31(8):1095-1104
The structural,electronic and optical properties of KNbO 3 (KN),NaNbO3(NN)and K05 Na0.5NbO3(KNN) in paraelectric cubic phase were calculated employing the plane-wave pseudopotential method based on density functional theory (DFT).The calculated electronic structures of the three crystals show similar features in the valence bands and the lower conduction bands.However,the structures in higher conduction bands differ markedly due to the effect of Na and K atoms.The calculated optical properties reveal that the features of optical spectrum at low energy are dominated by the transitions from O2p valence bands to Nb 4d conduction bands and those at high energy are related to the transitions to K 4s4p and/or Na 3s3p states.Moreover,the optical constants of KNN are approximately the average of KN and NN at high energy.Therefore,the optical properties of KNN in high energy region can probably be altered by changing the ratio of Na/K.  相似文献   

15.
The thermodynamic exclusion of Na+ relative to K+ in potassium channels is examined by calculating the distribution of binding energies for Na+ and K+ in a model of the selectivity filter of the KcsA potassium channel. These distributions are observed to take a surprisingly simple form: Gaussian with a slight positive skewness that is insignificant in the present context. Complications that might be anticipated from these distributions are not problematic here. Na+ occupies the filter with a mean binding energy substantially lower than that of K+. The difference is comparable to the difference in hydration free energies of Na+ and K+ in bulk aqueous solution. Thus, the average energies of binding to the filter do not discriminate Na+ from K+ when measured from a baseline of the difference in bulk hydration free energies. The strong binding of Na+ constricts the filter, consistent with a negative partial molar volume of Na+ in water in contrast with a positive partial molar volume of K+ in water. Discrimination in favor of K+)can be attributed to the scarcity of favorable binding configurations for Na+ compared to K+. That relative scarcity is quantified as enhanced binding energy fluctuations, which reflects both the energetically stronger binding of Na+ and the constriction of the filter induced by Na+ binding.  相似文献   

16.
17.
Static polarizabilities and photoabsorption cross sections of clusters Na 7 , Na8, Na 19 Na20 are calculated, based on the spherical jellium model including the self-interaction correction (SIC) of Perdew and Zunger. To this end, a new formulation of the theory of the linear response is presented, which is suitable for general, self-interaction corrected, many-electron systems. The results obtained display an overall agreement with available experimental data, offering a systematic improvement with respect to the standard TDLDA. Furthermore, the cross sections of the negatively charged clusters are found to be dominated by a broad peak in the visible region, whose line width can be related to the lifetime of the surface plasmon against electron detachment.On leave of absence from the University of Coimbra, Portugal  相似文献   

18.
The equilibrium structure, stability, and electronic properties of the Al(13)X (X=H,Au,Li,Na,K,Rb,Cs) clusters have been studied using a combination of photoelectron spectroscopy experiment and density functional theory. All these clusters constitute 40 electron systems with 39 electrons contributed by the 13 Al atoms and 1 electron contributed by each of the X (X=H,Au,Li,Na,K,Rb,Cs) atom. A systematic study allows us to investigate whether all electrons contributed by the X atoms are alike and whether the structure, stability, and properties of all the magic clusters are similar. Furthermore, quantitative agreement between the calculated and the measured electron affinities and vertical detachment energies enable us to identify the ground state geometries of these clusters both in neutral and anionic configurations.  相似文献   

19.
20.
A set of MO-LCAO calculations within the LSDA formalism has been performed for the analysis of the odd-even alternation in simple metal clusters. Electronic properties, including ionization potentials and partial density of states analyses were evaluated for clusters of Na, K, Cu and Ag ranging from two to nine atoms. The present study focus on the differences in magnitude of the odd-even alternation, which is attributed to the electronic level separation close to the Fermi level of the clusters. For the coinage metals, the hybridization between s, d and p states is shown to strongly influence the alternation, reducing the magnitude for copper to about the same value as for silver. The small reduction of the alternation magnitude due to a finite spin density for the odd clusters is also investigated by means of comparative LDA calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号