首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We report investigations of adsorption of N(2) and O(2) molecules on silver cluster cations. We have first revisited structures of small silver clusters based on first-principles calculations within the framework of density functional theory with hybrid functional. The 2D to 3D transition for the neutral clusters occurs from n = 6 to 7 and for cations, in agreement with experiments, from n = 4 to 5. With the refined structures, adsorption energies of N(2) and O(2) molecules have been calculated. We have identified characteristic drops in the adsorption energies of N(2) that further link our calculations and experiments, and confirm the reported 2D-3D transition for cations. We have found that perturbations caused by physisorbed molecules are small enough that the structures of most Ag clusters remain unchanged, even though physisorption stabilizes the 3D Ag(7)(+) structure slightly more than the 2D counterpart. Results for pure O(2) adsorption indicate that charge transfer from Ag(n)(+) to O(2) occurs when n > 3. Below that size oxygen essentially physisorbes such as nitrogen to the cluster. We interpret the experimentally observed mutually cooperative co-adsorption of oxygen and nitrogen using results from density functional theory with generalized gradient approximations. The key to the enhancement is N(2)-induced increase in charge transfer from Ag(n)(+) cations to O(2).  相似文献   

2.
Temperature-dependent gas-phase reaction kinetics measurements and equilibrium thermodynamics under multicollision conditions in conjunction with ab initio DFT calculations were employed to determine the binding energies of carbon monoxide to triatomic silver-gold binary cluster cations and anions. The binding energies of the first CO molecule to the trimer clusters increase with increasing gold content and with changing charge from negative to positive. Thus, the reactivity of the binary clusters can be sensitively tuned by varying charge state and composition. Also, multiple CO adsorption on the clusters was investigated. The maximum number of adsorbed CO molecules was found to strongly depend on cluster charge and composition as well. Most interestingly, the cationic carbonyl complex Au(3)(CO)(4)(+) is formed at cryogenic temperature, whereas for the anion, only two CO molecules are adsorbed, leading to Au(3)(CO)(2)(-). All other trimer clusters adsorb three CO molecules in the case of the cations and are completely inert to CO in our experiment in the case of the anions.  相似文献   

3.
Reactions of free silver anions Agn- (n = 1 - 13) with O2, CO, and their mixtures are investigated in a temperature controlled radio frequency ion trap setup. Cluster anions Agn- (n = 1 - 11) readily react with molecular oxygen to yield AgnOm- (m = 2, 4, or 6) oxide products. In contrast, no reaction of the silver cluster anions with carbon monoxide is detected. However, if silver cluster anions are exposed to the mixture of O2 and CO, new reaction products and a pronounced, discontinuous size dependence in the reaction behavior is observed. In particular, coadsorption complexes Agn(CO)O2- are detected for cluster sizes with n = 4 and 6 and, the most striking observation, in the case of the larger odd atom number clusters Ag7-, Ag9-, and Ag11-, the oxide product concentration decreases while a reappearance of the bare metal cluster signal is observed. This leads to the conclusion that carbon monoxide reacts with the activated oxygen on these silver clusters and indicates the prevalence of a catalytic reaction cycle.  相似文献   

4.
Near thermal energy reactive collisions of small mixed metal cluster cations Ag(m)Au(n) (+) (m+n=4, 5, and 6) with carbon monoxide have been studied in the room temperature Penning trap of a Fourier transform ion-cyclotron-resonance mass spectrometer as a function of cluster size and composition. The tetrameric species AgAu(3) (+) and Ag(2)Au(2) (+) are found to react dissociatively by way of Au or Ag atom loss, respectively, to form the cluster carbonyl AgAu(2)CO(+). In contrast, measurements on a selection of pentamers and hexamers show that CO is added with absolute rate constants that decrease with increasing silver content. Experimentally determined absolute rate constants for CO adsorption were analyzed using the radiative association kinetics model to obtain cluster cation-CO binding energies ranging from 0.77 to 1.09 eV. High-level ab initio density functional theory (DFT) computations identifying the lowest-energy cluster isomers and the respective CO adsorption energies are in good agreement with the experimental findings clearly showing that CO binds in a "head-on" fashion to a gold atom in the mixed clusters. DFT exploration of reaction pathways in the case of Ag(2)Au(2) (+) suggests that exoergicities are high enough to access the minimum energy products for all reactive clusters probed.  相似文献   

5.
Multistage mass spectrometry (MS(n)) experiments reveal that gas phase silver iodide cluster cations, Ag(n)I(m)(+), are readily built up in a stepwise fashion via ion-molecule reactions between mass selected silver (Ag(3)(+) and Ag(5)(+)) or silver hydride (Ag(2)H(+) and Ag(4)H(+)) cluster cations and allyl iodide, in contrast to their reactions with methyl iodide, which solely result in ligation of the clusters. The stoichiometries of these clusters range from 1 < or = n < or = 5 and 1 < or = m < or = 4, indicating the formation of several new subvalent silver iodide clusters. Collision induced dissociation (CID) experiments were carried out on each of these clusters to shed some light on their possible structures. The products arising from CID of the Ag(n)I(m)(+) clusters are highly dependent on the stoichiometry of the cluster. Thus the odd-electron clusters Ag(4)I(2)(+) and Ag(5)I(+) fragment via loss of a silver atom. In contrast, the even-electron cluster ions all fragment via loss of AgI. In addition, Ag(2)I(2) loss is observed for the Ag(4)I(3)(+) and Ag(5)I(2)(+) clusters, while loss of Ag(3)I(3) occurs for the stoichiometric Ag(5)I(4)(+) cluster. DFT calculations were carried out on these Ag(n)I(m)(+) clusters as well as the neutrals associated with the ion-molecule and CID reactions. A range of different isomeric structures were calculated and their structures are described. A noteworthy aspect is that ligation of these silver clusters by I can have a profound effect on the geometry of the silver cluster. For example, D(3h) Ag(3)(+) becomes C(2v) Ag(3)I(+), which in turn becomes C(2h) Ag(3)I(2)(+). Finally, the DFT predicted thermochemistry supports the different types of reaction channels observed in the ion-molecule reactions and CID experiments.  相似文献   

6.
Impact of fullerene ions (C(60)(-)) on a metallic surface at keV kinetic energies and under single collision conditions is used as an efficient way for generating gas phase carbide cluster ions of gold and silver, which were rarely explored before. Positively and negatively charged cluster ions, Au(n)C(m)(+) (n = 1-5, 1 ≤ m ≤ 12), Ag(n)C(m)(+) (n = 1-7, 1 ≤ m ≤ 7), Au(n)C(m)(-) (n = 1-5, 1 ≤ m ≤ 10), and Ag(n)C(m)(-) (n = 1-3, 1 ≤ m ≤ 6), were observed. The Au(3)C(2)(+) and Ag(3)C(2)(+) clusters are the most abundant cations in the corresponding mass spectra. Pronounced odd/even intensity alternations were observed for nearly all Au(n)C(m)(+/-) and Ag(n)C(m)(+/-) series. The time dependence of signal intensity for selected positive ions was measured over a broad range of C(60)(-) impact energies and fluxes. A few orders of magnitude immediate signal jump instantaneous with the C(60)(-) ion beam opening was observed, followed by a nearly constant plateau. It is concluded that the overall process of the fullerene collision and formation∕ejection of the carbidic species can be described as a single impact event where the shattering of the incoming C(60)(-) ion into small C(m) fragments occurs nearly instantaneously with the (multiple) pickup of metal atoms and resulting emission of the carbide clusters. Density functional theory calculations showed that the most stable configuration of the Au(n)C(m)(+) (n = 1, 2) clusters is a linear carbon chain with one or two terminal gold atoms correspondingly (except for a bent configuration of Au(2)C(+)). The calculated AuC(m) adiabatic ionization energies showed parity alternations in agreement with the measured intensity alternations of the corresponding ions. The Au(3)C(2)(+) ion possesses a basic Au(2)C(2) acetylide structure with a π-coordinated third gold atom, forming a π-complex structure of the type [Au(π-Au(2)C(2))](+). The calculation shows meaningful contributions of direct gold-gold bonding to the overall stability of the Au(3)C(2)(+) complex.  相似文献   

7.
Titanium oxide clusters were formed in the gas phase by the laser ablation of a Ti rod in the presence of oxygen in a He gas. Not only stoichiometric but also nonstoichiometric titanium oxide clusters, Ti(n)O(2n+x)(+) (n = 1-22 and x = -1-3), were formed. The content of oxygen atoms depends strongly on a partial pressure of oxygen. Gold clusters, Au(m) (m = 1-4), were generated by the laser ablation, which were then deposited on Ti(n)O(2n+x) clusters. The formation of Au(m)Ti(n)O(2n+x)(+) follows electron transfer from Au(m) to Ti(n)O(2n+x)(+). The reactivity of Au(m)Ti(n)O(2n+x)(+) cluster ions with CO was examined for different m, n, and x by the mass spectrometry. It was found that Au(m) on Ti(n)O(2n-1)(+) are less reactive than those on the other Ti(n)O(2n+x)(+) (x = 0 and 1). In addition, the reactivity is highest when Au(m) (m = 1 and 3) is on the stoichiometric titanium oxide (x = 0), whereas the reactivity is also high when Au(2) is on the oxygen-rich titanium oxide (x = 1). The reactivity was found to relate to geometrical structures of Au(m)Ti(n)O(2n+x)(+), which were studied by density functional calculations.  相似文献   

8.
The gas phase reactions of carbon monoxide with small mass-selected clusters of palladium, Pd(x)(+) (x = 2-7), and their oxides, Pd(x)O(+) (x = 2-7) and Pd(x)O(2)(+) (x = 4-6), have been investigated in a radio frequency ion trap operated under multi-collision conditions. The bare palladium clusters were found to readily adsorb CO yielding a highly size dependent product pattern. Most interestingly, the reactions of the pre-oxidized palladium clusters with CO lead to very similar product distributions of Pd(x)(CO)(z)(+) complexes as in the case of the corresponding pure Pd(x)(+) clusters. Consequently, it has been concluded that the investigated palladium oxide clusters efficiently oxidize CO under formation of the bare clusters, which further adsorb CO molecules yielding the previously observed Pd(x)(CO)(z)(+) product complex distributions. This CO combustion reaction has been observed even at temperatures as low as 100 K. However, for Pd(2)O(+), Pd(6)O(+), Pd(6)O(2)(+), and Pd(7)O(+) a competing reaction channel yielding palladium oxide carbonyls Pd(x)O(CO)(z)(+) could be detected. The latter adsorption reaction may even hamper the CO combustion under certain reaction conditions and indicates enhanced activation barriers involved in the CO oxidation and/or the CO(2) elimination process on these clusters.  相似文献   

9.
Reactions of oxygen-chemisorbed cobalt and iron cluster cations (Co(n)O(m)(+) and Fe(n)O(m)(+); n = 3-6, m = 1-3) with an NH(3) molecule have been investigated in comparison with their bare metal cluster cations at a collision energy of 0.2 eV by use of a guided ion beam tandem mass spectrometer. We have observed three kinds of reaction products, which come from NH(3) chemisorption with and without release of a metal atom from the cluster and dehydrogenation of the chemisorbed NH(3). Reaction cross sections and branching fractions are strongly influenced by the number of oxygen atoms introduced onto the metal clusters. Oxygen-chemisorbed metal clusters with particular compositions such as Co(4)O(+), Co(5)O(2)(+), and Fe(5)O(2)(+) are extremely reactive for NH(3) dehydrogenation, whereas Co(4)O(2)(+) and Fe(4)O(2)(+) exhibit high reactivity for NH(3) chemisorption with metal release. The enhancement of dehydrogenation for specific compositions can be interpreted in terms of competition between O-H and neighboring Co-H (or Fe-H) formation.  相似文献   

10.
We present the results of a reactivity study of titanium cationic clusters towards CO, C(2)H(2), C(2)H(4) and C(3)H(6) based on guided-ion-beam mass spectrometry and DFT calculations. We identified Ti(2)O(4)(+) and to a lesser extent TiO(2)(+) species which preferentially undergo oxidation reactions. An oxygen centered radical of Ti(2)O(4)(+) is responsible for selective oxidation. Energy profiles and MD simulations reveal the mechanisms of the reactions. Regeneration of the oxygen centered radical was achieved experimentally and theoretically through the reaction of N(2)O with Ti(2)O(3)(+).  相似文献   

11.
Using density functional calculations, we demonstrate a catalytic reaction path with activation barriers of less than 0.5 eV for CO oxidation on the neutral and unsupported icosahedral nanoclusters of Au(55), Ag(55), and Au(25)Ag(30). Both CO and O(2) adsorb more strongly on these clusters than on the corresponding bulk surfaces. The reaction path consists of an intermediate involving OOCO complex through which the coadsorption energy of CO and O(2) on these clusters is expected to play an important role in the reaction. Based on the studies for the Au and Ag nanoclusters, a model alloy nanocluster of Au(25)Ag(30) was designed to provide a larger coadsorption energy for CO and O(2) and was anticipated to be a better catalyst for CO oxidation from energetic analysis.  相似文献   

12.
We found from DFT calculations that Ag-Ag orbital interactions as well as Ag-O electrostatic interactions determine the structures of three silver cations inside a nanometer-sized cavity of ZSM-5 (Ag(3)-ZSM-5) in lower and higher spin states. Both interactions strongly depend on the number of Al atoms substituted for Si atoms on the ZSM-5 framework (ZSM-5(Al(n))), where n ranges from 1 to 3. In smaller n, stronger Ag-Ag orbital interactions and weaker Ag-O electrostatic interactions operate. Accordingly, there are significant dependencies of the structures of three silver cations on the number of Al atoms. In lower spin states of Ag(3)-ZSM-5(Al(1)) and Ag(3)-ZSM-5(Al(2)), D(3h)-like triangle clusters are contained inside ZSM-5 whereas their higher spin states have triangle clusters distorted significantly from the D(3h) structure. In lower spin states, the totally symmetric orbital consisting of 5s(Ag) orbitals is responsible for cluster formation, whereas in higher spin states occupation of a 5s(Ag)-based orbital with one node results in significant distortion of the triangle clusters. The distortion can be partially understood by analogies to Jahn-Teller distortion of the bare D(3h) Ag(3)(+) cluster in the triplet spin state. When n is 3, we found that three silver cations are isolated in a lower spin state and that a linear cluster consisting of two silver cations is formed in a higher spin state. Thus, we demonstrate from DFT calculations that the number of Al atoms can control the properties of three silver cations inside a ZSM-5 cavity. Since the structural and electronic features of the enclosed silver clusters can link to their catalytic properties, the DFT findings can help us to understand the catalytic activity of Ag-ZSM-5.  相似文献   

13.
Recent experiments on CO oxidation reaction using seven-atom Au clusters deposited on TiO2 surface correlate CO2 formation with oxygen associated with Au clusters. We perform first principles calculations using a seven-atom Au cluster supported on a reduced TiO2 surface to explore potential candidates for the form of reactive oxygen. These calculations suggest a thermodynamically favorable path for O2 diffusion along the surface Ti row, resulting in its dissociated state bound to Au cluster and TiO2 surface. CO can approach along the same path and react with the O2 so dissociated to form CO2. The origin of the slow kinetic evolution of products observed in experiments is also investigated and is attributed to the strong binding of CO2 simultaneously to the Au cluster and the surface.  相似文献   

14.
A novel size dependence in the adsorption reaction of multiple O2 molecules onto anionic silver clusters Agn- (n = 1-5) is revealed by gas-phase reaction studies in an rf-ion trap. Ab initio theoretical modeling based on DFT method provides insight into the reaction mechanism and finds cooperative electronic and structural effects to be responsible for the size selective reactivity of Agn- clusters toward one or more O2. In particular, Agn- clusters with odd n have paired electrons and therefore bind one O2 only weakly, but they are simultaneously activated to adsorb a strongly bound second oxygen molecule. For the clusters Ag3O4- and Ag5O4-, this cooperative effect results in a superoxo-like, doubly bound O2 subunit with potentially high activity in catalytic silver cluster oxidation processes.  相似文献   

15.
在全电子相对论BVP86/DNP水平下对CO在Au55,Ag55和Cu55团簇上的吸附进行了比较研究,并考察了电荷对吸附的影响.计算结果表明,CO在Au55团簇上吸附能最大,其次为Cu55团簇,最弱的为Ag55团簇.团簇电荷对C—O键活化和CO与团簇表面原子成键影响较小.金团簇的电荷对吸附能影响较大,而银和铜团簇的电荷对吸附能影响较小.CO吸附到团簇上导致团簇上电子向CO转移.C—O键活化强度与吸附位置密切相关,其中孔位吸附导致C—O键活化程度最大,最弱的为顶位吸附.CO在金团簇上吸附具有较好选择性,而在银和铜团簇上吸附无选择性.  相似文献   

16.
Mass selected cations of Ag clusters are deposited, together with Ar seeded with CO2 (or other electron scavengers such as O2, N2O, or CCl4), on a cold substrate, while being flooded with low energy electrons. Optical absorption measurements reveal an efficient trapping of Ag cluster cations in the Ar matrix, provided that CO2 or another electron scavenger is present to ensure charge neutrality of the matrix. The spectrum of Ag3+ thus obtained is in excellent agreement with previous predictions from quantum chemical calculations.  相似文献   

17.
Laser-ablated Cu, Ag, and Au atoms react with CO and O2 mixture in solid argon to produce carbonyl metal oxides, (O2)Cu(CO)(n) (n = 1, 2), (eta(1)-OO)MCO (M = Ag, Au), OCAuO2CO, and OAuCO, as well as group 11 metal carbonyls and oxides. These carbonyl metal oxides are characterized using infrared spectroscopy on the basis of the results of the isotopic substitution and the CO concentration change. Density functional theory (DFT) calculations have been performed on these molecules. The identifications of these carbonyl metal oxides are confirmed by the good agreement between the experimental and calculated vibrational frequencies, relative absorption intensities, and isotopic shifts. Carbon dioxide is eliminated from these carbonyl metal oxides upon UV irradiation, providing the evidence for the oxidation of carbon monoxide on group 11 metal atoms. The present experiments also reveal that the reactivity of copper toward CO is prior to O2, and the reactivity of silver toward O2 is prior to CO, whereas the reactivity of gold toward CO is comparable to O2.  相似文献   

18.
Small aluminum oxide cluster cations and anions, produced by laser vaporization, were investigated regarding their reactivity toward CO and N2O employing guided-ion-beam mass spectrometry. Clusters with the same stoichiometry as bulk alumina, Al2O3, exhibited atomic oxygen transfer products when reacted with CO, suggesting the formation of CO2. Anionic clusters were less reactive than cations but showed higher selectivity towards the transfer of only a single oxygen atom. Cationic clusters, in contrast, exhibited additional products corresponding to the sequential transfer of two oxygen atoms and the loss of an aluminum atom. To determine if these stoichiometric clusters could be generated from oxygen-deficient species, clusters having a stoichiometry with one less oxygen atom than bulk alumina, Al2O2, were reacted with N2O. Cationic clusters were found to be selectively oxidized to Al2O3(+), while anionic clusters added both one and two oxygen atoms forming Al2O3(-) and Al2O4(-). The oxygen-rich Al2O4(-) cluster exhibited comparable reactivity to Al2O3(-) when reacted with CO.  相似文献   

19.
Gas phase catalytic reactions involving the reduction of N(2)O and oxidation of CO were observed at the molecular level on isolated neutral rhodium clusters, Rh(n) (n = 10-28), using mass spectrometry. Sequential oxygen transfer reactions, Rh(n)O(m-1) + N(2)O → Rh(n)O(m) + N(2) (m = 1, 2, 3,…), were monitored and the rate constant for each reaction step was determined as a function of the cluster size. Oxygen extraction reactions by a CO molecule, Rh(n)O(m) + CO → Rh(n)O(m-1) + CO(2) (m = 1, 2, 3,…), were also observed when a small amount of CO was mixed with the reactant N(2)O gas. The rate constants of the oxygen extraction reactions by CO for m ≥ 4 were found to be two or three orders of magnitude higher than the rate constants for m ≤ 3, which indicates that the catalytic reaction proceeds more efficiently when the reaction cycles turn over around Rh(n)O(m) (m ≥ 4) than around bare Rh(n). Rhodium clusters operate as more efficient catalysts when they are oxidized than non- or less-oxidized rhodium clusters, which is consistent with theoretical and experimental studies on the catalytic CO oxidation reaction on a rhodium surface.  相似文献   

20.
Spurred by the recent demonstrations of the size- and support-dependent reactivity of supported gold clusters, here we present results on the coadsorption of CO and O(2) on selected anionic gold clusters, Au(N)(-), in the gas phase. O(2) adsorbs in a binary (0,1) fashion as a one-electron acceptor on the Au(N)()(-) clusters, with even-N clusters showing varying reactivity toward O(2) adsorption, while odd-N clusters show no evidence of reactivity. CO shows a highly size-dependent reactivity for Au(N)(-) sizes from N = 4 to 19, but no adsorption on the gold dimer or trimer. When the gold clusters are exposed to both reactants, either simultaneously or sequentially, interesting effects have been observed. While the same rules pertaining to individual O(2) or CO adsorption continue to apply, the preadsorption of one reactant on a cluster may lead to the increased reactivity of the cluster to the other reactant. Thus, the adsorbates are not competing for bonding sites (competitive coadsorption), but, instead, aid in the adsorption of one another (cooperative coadsorption). New peaks also arise in the mass spectrum of Au(6)(-) under CO and O(2) coadsorption conditions, which can be attributed to the loss of a CO(2) molecule (or molecules). By studying the relative amount of reaction, and relating it to the reaction time, it is found that the gas-phase Au(6) anion is capable of oxidizing CO at a rate 100 times that reported for commercial or model gold catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号