首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This experiment measured the capability of hearing-impaired individuals to discriminate differences in the cues to the distance of spoken sentences. The stimuli were generated synthetically, using a room-image procedure to calculate the direct sound and first 74 reflections for a source placed in a 7 x 9 m room, and then presenting each of those sounds individually through a circular array of 24 loudspeakers. Seventy-seven listeners participated, aged 22-83 years and with hearing levels from -5 to 59 dB HL. In conditions where a substantial change in overall level due to the inverse-square law was available as a cue, the elderly hearing-impaired listeners did not perform any different from control groups. In other conditions where that cue was unavailable (so leaving the direct-to-reverberant relationship as a cue), either because the reverberant field dominated the direct sound or because the overall level had been artificially equalized, hearing-impaired listeners performed worse than controls. There were significant correlations with listeners' self-reported distance capabilities as measured by the "Speech, Spatial, and Qualities of Hearing" questionnaire [S. Gatehouse and W. Noble, Int. J. Audiol. 43, 85-99 (2004)]. The results demonstrate that hearing-impaired listeners show deficits in the ability to use some of the cues which signal auditory distance.  相似文献   

2.
This study compared the ability of 5 listeners with normal hearing and 12 listeners with moderate to moderately severe sensorineural hearing loss to discriminate complementary two-component complex tones (TCCTs). The TCCTs consist of two pure tone components (f1 and f2) which differ in frequency by delta f (Hz) and in level by delta L (dB). In one of the complementary tones, the level of the component f1 is greater than the level of component f2 by the increment delta L; in the other tone, the level of component f2 exceeds that of component f1 by delta L. Five stimulus conditions were included in this study: fc = 1000 Hz, delta L = 3 dB; fc = 1000 Hz, delta L = 1 dB; fc = 2000 Hz, delta L = 3 dB; fc = 2000 Hz, delta L = 1 dB; and fc = 4000 Hz, delta L = 3 dB. In listeners with normal hearing, discrimination of complementary TCCTs (with a fixed delta L and a variable delta f) is described by an inverted U-shaped psychometric function in which discrimination improves as delta f increases, is (nearly) perfect for a range of delta f's, and then decreases again as delta f increases. In contrast, group psychometric functions for listeners with hearing loss are shifted to the right such that above chance performance occurs at larger values of delta f than in listeners with normal hearing. Group psychometric functions for listeners with hearing loss do not show a decrease in performance at the largest values of delta f included in this study. Decreased TCCT discrimination is evident when listeners with hearing loss are compared to listeners with normal hearing at both equal SPLs and at equal sensation levels. In both groups of listeners, TCCT discrimination is significantly worse at high center frequencies. Results from normal-hearing listeners are generally consistent with a temporal model of TCCT discrimination. Listeners with hearing loss may have deficits in using phase locking in the TCCT discrimination task and so may rely more on place cues in TCCT discrimination.  相似文献   

3.
The goal of this study was to measure the ability of adult hearing-impaired listeners to discriminate formant frequency for vowels in isolation, syllables, and sentences. Vowel formant discrimination for F1 and F2 for the vowels /I epsilon ae / was measured. Four experimental factors were manipulated including linguistic context (isolated vowels, syllables, and sentences), signal level (70 and 95 dB SPL), formant frequency, and cognitive load. A complex identification task was added to the formant discrimination task only for sentences to assess effects of cognitive load. Results showed significant elevation in formant thresholds as formant frequency and linguistic context increased. Higher signal level also elevated formant thresholds primarily for F2. However, no effect of the additional identification task on the formant discrimination was observed. In comparable conditions, these hearing-impaired listeners had elevated thresholds for formant discrimination compared to young normal-hearing listeners primarily for F2. Altogether, poorer performance for formant discrimination for these adult hearing-impaired listeners was mainly caused by hearing loss rather than cognitive difficulty for tasks implemented in this study.  相似文献   

4.
It is unclear how well harbor porpoises can locate sound sources, and thus can locate acoustic alarms on gillnets. Therefore the ability of a porpoise to determine the location of a sound source was determined. The animal was trained to indicate the active one of 16 transducers in a 16-m-diam circle around a central listening station. The duration and received level of the narrowband frequency-modulated signals (center frequencies 16, 64 and 100 kHz) were varied. The animal's localization performance increased when the signal duration increased from 600 to 1000 ms. The lower the received sound pressure level (SPL) of the signal, the harder the animal found it to localize the sound source. When pulse duration was long enough (approximately 1 s) and the received SPLs of the sounds were high (34-50 dB above basic hearing thresholds or 3-15 dB above the theoretical masked detection threshold in the ambient noise condition of the present study), the animal could locate sounds of the three frequencies almost equally well. The porpoise was able to locate sound sources up to 124 degrees to its left or right more easily than sounds from behind it.  相似文献   

5.
After successful cochlear implantation in one ear, some patients continue to use a hearing aid at the contralateral ear. They report an improved reception of speech, especially in noise, as well as a better perception of music when the hearing aid and cochlear implant are used in this bimodal combination. Some individuals in this bimodal patient group also report the impression of an improved localization ability. Similar experiences are reported by the group of bilateral cochlear implantees. In this study, a survey of 11 bimodally and 4 bilaterally equipped cochlear implant users was carried out to assess localization ability. Individuals in the bimodal implant group were all provided with the same type of hearing aid in the opposite ear, and subjects in the bilateral implant group used cochlear implants of the same manufacturer on each ear. Subjects adjusted the spot of a computer-controlled laser-pointer to the perceived direction of sound incidence in the frontal horizontal plane by rotating a trackball. Two subjects of the bimodal group who had substantial residual hearing showed localization ability in the bimodal configuration, whereas using each single device only the subject with better residual hearing was able to discriminate the side of sound origin. Five other subjects with more pronounced hearing loss displayed an ability for side discrimination through the use of bimodal aids, while four of them were already able to discriminate the side with a single device. Of the bilateral cochlear implant group one subject showed localization accuracy close to that of normal hearing subjects. This subject was also able to discriminate the side of sound origin using the first implanted device alone. The other three bilaterally equipped subjects showed limited localization ability using both devices. Among them one subject demonstrated a side-discrimination ability using only the first implanted device.  相似文献   

6.
Normal-hearing listeners' ability to "hear out" the pitch of a target harmonic complex tone (HCT) was tested with simultaneous HCT or noise maskers, all bandpass-filtered into the same spectral region (1200-3600 Hz). Target-to-masker ratios (TMRs) necessary to discriminate fixed fundamental-frequency (F0) differences were measured for target F0s between 100 and 400 Hz. At high F0s (400 Hz), asynchronous gating of masker and signal, presenting the masker in a different F0 range, and reducing the F0 rove of the masker, all resulted in improved performance. At the low F0s (100 Hz), none of these manipulations improved performance significantly. The findings are generally consistent with the idea that the ability to segregate sounds based on cues such as F0 differences and onset/offset asynchronies can be strongly limited by peripheral harmonic resolvability. However, some cases were observed where perceptual segregation appeared possible, even when no peripherally resolved harmonics were present in the mixture of target and masker. A final experiment, comparing TMRs necessary for detection and F0 discrimination, showed that F0 discrimination of the target was possible with noise maskers at only a few decibels above detection threshold, whereas similar performance with HCT maskers was only possible 15-25 dB above detection threshold.  相似文献   

7.
To discriminate between broadband noises with and without a high-frequency spectral notch is more difficult at 70-80 dB sound pressure level than at lower or higher levels [Alves-Pinto, A. and Lopez-Poveda, E. A. (2005). "Detection of high-frequency spectral notches as a function of level," J. Acoust. Soc. Am. 118, 2458-2469]. One possible explanation is that the notch is less clearly represented internally at 70-80 dB SPL than at any other level. To test this hypothesis, forward-masking patterns were measured for flat-spectrum and notched noise maskers for masker levels of 50, 70, 80, and 90 dB SPL. Masking patterns were measured in two conditions: (1) fixing the masker-probe time interval at 2 ms and (2) varying the interval to achieve similar masked thresholds for different masker levels. The depth of the spectral notch remained approximately constant in the fixed-interval masking patterns and gradually decreased with increasing masker level in the variable-interval masking patterns. This difference probably reflects the effects of peripheral compression. These results are inconsistent with the nonmonotonic level-dependent performance in spectral discrimination. Assuming that a forward-masking pattern is a reasonable psychoacoustical correlate of the auditory-nerve rate-profile representation of the stimulus spectrum, these results undermine the common view that high-frequency spectral notches must be encoded in the rate-profile of auditory-nerve fibers.  相似文献   

8.
This study examined the effects of mild-to-moderate sensorineural hearing loss on vowel perception abilities of young, hearing-impaired (YHI) adults. Stimuli were presented at a low conversational level with a flat frequency response (approximately 60 dB SPL), and in two gain conditions: (a) high level gain with a flat frequency response (95 dB SPL), and (b) frequency-specific gain shaped according to each listener's hearing loss (designed to simulate the frequency response provided by a linear hearing aid to an input signal of 60 dB SPL). Listeners discriminated changes in the vowels /I e E inverted-v ae/ when F1 or F2 varied, and later categorized the vowels. YHI listeners performed better in the two gain conditions than in the conversational level condition. Performances in the two gain conditions were similar, suggesting that upward spread of masking was not seen at these signal levels for these tasks. Results were compared with those from a group of elderly, hearing-impaired (EHI) listeners, reported in Coughlin, Kewley-Port, and Humes [J. Acoust. Soc. Am. 104, 3597-3607 (1998)]. Comparisons revealed no significant differences between the EHI and YHI groups, suggesting that hearing impairment, not age, is the primary contributor to decreased vowel perception in these listeners.  相似文献   

9.
Bottlenose dolphins (Tursiops truncatus) detect and discriminate underwater objects by interrogating the environment with their native echolocation capabilities. Study of dolphins' ability to detect complex (multihighlight) signals in noise suggest echolocation object detection using an approximate 265-micros energy integration time window sensitive to the echo region of highest energy or containing the highlight with highest energy. Backscatter from many real objects contains multiple highlights, distributed over multiple integration windows and with varying amplitude relationships. This study used synthetic echoes with complex highlight structures to test whether high-amplitude initial highlights would interfere with discrimination of low-amplitude trailing highlights. A dolphin was trained to discriminate two-highlight synthetic echoes using differences in the center frequencies of the second highlights. The energy ratio (delta dB) and the timing relationship (delta T) between the first and second highlights were manipulated. An iso-sensitivity function was derived using a factorial design testing delta dB at -10, -15, -20, and -25 dB and delta T at 10, 20, 40, and 80 micros. The results suggest that the animal processed multiple echo highlights as separable analyzable features in the discrimination task, perhaps perceived through differences in spectral rippling across the duration of the echoes.  相似文献   

10.
Can a shift in interaural phase between a subthreshold signal and an audible contralateral probe tone affect perception of the probe? To obtain an answer, an 800-Hz tone was presented to both ears. The tone was presented continuously to one ear (-25 to + 10 dB SL) and in a sequence of four bursts per trial to the other ear (+ 10 dB SL). Interaural phase was reversed for either the second or the fourth burst in a 2 AFC task. Interaural phase-shift detection threshold (65% correct) varied with the intensity of the continuous signal; across subjects, this threshold varied from -21 to + 1 dB SL. When a 300-or 500-Hz masking tone was added to the ear with the continuous signal, phase-shift detection accuracy depended primarily upon the sensation level of the signal rather than its sound pressure level. These findings demonstrate temporal encoding at signal levels well below hearing threshold.  相似文献   

11.
Equal-loudness functions describe relationships between the frequencies of sounds and their perceived loudness. This pilot study investigated the possibility of deriving equal-loudness contours based on the assumption that sounds of equal perceived loudness elicit equal reaction times (RTs). During a psychoacoustic underwater hearing study, the responses of two young female harbor seals to tonal signals between 0.125 and 100 kHz were filmed. Frame-by-frame analysis was used to quantify RT (the time between the onset of the sound stimulus and the onset of movement of the seal away from the listening station). Near-threshold equal-latency contours, as surrogates for equal-loudness contours, were estimated from RT-level functions fitted to mean RT data. The closer the received sound pressure level was to the 50% detection hearing threshold, the more slowly the animals reacted to the signal (RT range: 188-982 ms). Equal-latency contours were calculated relative to the RTs shown by each seal at sound levels of 0, 10, and 20 dB above the detection threshold at 1 kHz. Fifty percent detection thresholds are obtained with well-trained subjects actively listening for faint familiar sounds. When calculating audibility ranges of sounds for harbor seals in nature, it may be appropriate to consider levels 20 dB above this threshold.  相似文献   

12.
Helicopter long range active sonar (HELRAS), a "dipping" sonar system used by lowering transducer and receiver arrays into water from helicopters, produces signals within the functional hearing range of many marine animals, including the harbor porpoise. The distance at which the signals can be heard is unknown, and depends, among other factors, on the hearing sensitivity of the species to these particular signals. Therefore, the hearing thresholds of a harbor porpoise for HELRAS signals were quantified by means of a psychophysical technique. Detection thresholds were obtained for five 1.25 s simulated HELRAS signals, varying in their harmonic content and amplitude envelopes. The 50% hearing thresholds for the different signals were similar: 76 dB re 1 μPa (broadband sound pressure level, averaged over the signal duration). The detection thresholds were similar to those found in the same porpoise for tonal signals in the 1-2 kHz range measured in a previous study. Harmonic distortion, which occurred in three of the five signals, had little influence on their audibility. The results of this study, combined with information on the source level of the signal, the propagation conditions and ambient noise levels, allow the calculation of accurate estimates of the distances at which porpoises can detect HELRAS signals.  相似文献   

13.
Caged fish were exposed to sound from mid-frequency active (MFA) transducers in a 5 × 5 planar array which simulated MFA sounds at received sound pressure levels of 210 dB SPL(re 1 μPa). The exposure sound consisted of a 2 s frequency sweep from 2.8 to 3.8 kHz followed by a 1 s tone at 3.3 kHz. The sound sequence was repeated every 25 s for five repetitions resulting in a cumulative sound exposure level (SEL(cum)) of 220 dB re 1 μPa(2) s. The cumulative exposure level did not affect the hearing sensitivity of rainbow trout, a species whose hearing range is lower than the frequencies in the presented MFA sound. In contrast, one cohort of channel catfish showed a statistically significant temporary threshold shift of 4-6 dB at 2300 Hz, but not at lower tested frequencies, whereas a second cohort showed no change. It is likely that this threshold shift resulted from the frequency spectrum of the MFA sound overlapping with the upper end of the hearing frequency range of the channel catfish. The observed threshold shifts in channel catfish recovered within 24 h. There was no mortality associated with the MFA sound exposure used in this test.  相似文献   

14.
Better place-coding of the fundamental frequency in cochlear implants   总被引:1,自引:0,他引:1  
In current cochlear implant systems, the fundamental frequency F0 of a complex sound is encoded by temporal fluctuations in the envelope of the electrical signals presented on the electrodes. In normal hearing, the lower harmonics of a complex sound are resolved, in contrast with a cochlear implant system. In the present study, it is investigated whether "place-coding" of the first harmonic improves the ability of an implantee to discriminate complex sounds with different fundamental frequencies. Therefore, a new filter bank was constructed, for which the first harmonic is always resolved in two adjacent filters, and the balance between both filter outputs is directly related to the frequency of the first harmonic. The new filter bank was compared with a filter bank that is typically used in clinical processors, both with and without the presence of temporal cues in the stimuli. Four users of the LAURA cochlear implant participated in a pitch discrimination task to determine detection thresholds for F0 differences. The results show that these thresholds decrease noticeably for the new filter bank, if no temporal cues are present in the stimuli. If temporal cues are included, the differences between the results for both filter banks become smaller, but a clear advantage is still observed for the new filter bank. This demonstrates the feasibility of using place-coding for the fundamental frequency.  相似文献   

15.
An earlier study examined the effects of exposure to seismic air guns on the hearing of three species of fish from the Mackenzie River Delta in Northern Canada [Popper et al. (2005). "Effects of exposure to seismic airgun use on hearing of three fish species," J. Acoust. Soc. Am. 117, 3958-3971]. The sound pressure levels to which the fishes were exposed were a mean received level of 205-209 dB re 1 microPa (peak) per shot and an approximate received mean SEL of 176-180 dB re 1 microPa(2) s per shot. In this report, the same animals were examined to determine whether there were effects on the sensory cells of the inner ear as a result of the seismic exposure. No damage was found to the ears of the fishes exposed to seismic sounds despite the fact that two of the species, adult northern pike and lake chub, had shown a temporary threshold shift in hearing studies.  相似文献   

16.
It has been hypothesized that the wider-than-normal auditory bandwidths attributed to sensorineural hearing loss lead to a reduced ability to discriminate spectral characteristics in speech signals. In order to investigate this possibility, the minimum detectable depth of a spectral "notch" between the second (F2) and third (F3) formants of a synthetic vowel-like stimulus was determined for normal and hearing-impaired subjects. The minimum detectable notch for all subjects was surprisingly small; values obtained were much smaller than those found in actual vowels. An analysis of the stimuli based upon intensity discrimination within a single critical band predicted only small differences in performance on this task for rather large differences in the size of the auditory bandwidth. These results suggest that impairments of auditory frequency resolution in sensorineural hearing loss may not be critical in the perception of steady-state vowels.  相似文献   

17.
Sound conditioning (pre-exposure to a moderate-level acoustic stimulus) can induce resistance to hearing loss from a subsequent traumatic exposure. Most sound conditioning experiments have utilized long-duration tones and noise at levels below 110 dB SPL as traumatic stimuli. It is important to know if sound conditioning can also provide protection from brief, high-level stimuli such as impulses produced by gunfire, and whether there are differences between females and males in the response of the ear to noise. In the present study, chinchillas were exposed to 95 dB SPL octave band noise centered at 0.5 kHz for 6 h/day for 5 days. After 5 days of recovery, they were exposed to simulated M16 rifle fire at a level of 150 dB peak SPL. Animals that were sound conditioned showed less hearing loss and smaller hair cell lesions than controls. Females showed significantly less hearing loss than males at low frequencies, but more hearing loss at 16 kHz. Cochleograms showed slightly less hair cell loss in females than in males. The results show that significant protection from impulse noise can be achieved with a 5-day conditioning regimen, and that there are consistent differences between female and male chinchillas in the response of the cochlea to impulse noise.  相似文献   

18.
The distance at which harbor porpoises can hear underwater detonation sounds is unknown, but depends, among other factors, on the hearing threshold of the species for impulsive sounds. Therefore, the underwater hearing threshold of a young harbor porpoise for an impulsive sound, designed to mimic a detonation pulse, was quantified by using a psychophysical technique. The synthetic exponential pulse with a 5?ms time constant was produced and transmitted by an underwater projector in a pool. The resulting underwater sound, though modified by the response of the projection system and by the pool, exhibited the characteristic features of detonation sounds: A zero to peak sound pressure level of at least 30?dB (re 1?s(-1)) higher than the sound exposure level, and a short duration (34?ms). The animal's 50% detection threshold for this impulsive sound occurred at a received unweighted broadband sound exposure level of 60?dB re 1?μPa(2)s. It is shown that the porpoise's audiogram for short-duration tonal signals [Kastelein et al., J. Acoust. Soc. Am. 128, 3211-3222 (2010)] can be used to estimate its hearing threshold for impulsive sounds.  相似文献   

19.
Temporal processing in the aging auditory system.   总被引:2,自引:0,他引:2  
Measures of monaural temporal processing and binaural sensitivity were obtained from 12 young (mean age = 26.1 years) and 12 elderly (mean age = 70.9 years) adults with clinically normal hearing (pure-tone thresholds < or = 20 dB HL from 250 to 6000 Hz). Monaural temporal processing was measured by gap detection thresholds. Binaural sensitivity was measured by interaural time difference (ITD) thresholds. Gap and ITD thresholds were obtained at three sound levels (4, 8, or 16 dB above individual threshold). Subjects were also tested on two measures of speech perception, a masking level difference (MLD) task, and a syllable identification/discrimination task that included phonemes varying in voice onset time (VOT). Elderly listeners displayed poorer monaural temporal analysis (higher gap detection thresholds) and poorer binaural processing (higher ITD thresholds) at all sound levels. There were significant interactions between age and sound level, indicating that the age difference was larger at lower stimulus levels. Gap detection performance was found to correlate significantly with performance on the ITD task for young, but not elderly adult listeners. Elderly listeners also performed more poorly than younger listeners on both speech measures; however, there was no significant correlation between psychoacoustic and speech measures of temporal processing. Findings suggest that age-related factors other than peripheral hearing loss contribute to temporal processing deficits of elderly listeners.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号