首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   0篇
化学   26篇
晶体学   1篇
数学   12篇
物理学   47篇
  2021年   1篇
  2020年   1篇
  2016年   2篇
  2015年   1篇
  2013年   2篇
  2012年   5篇
  2011年   6篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   7篇
  1999年   4篇
  1998年   1篇
  1992年   3篇
  1991年   1篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1962年   1篇
  1959年   1篇
排序方式: 共有86条查询结果,搜索用时 15 毫秒
1.
Reductions in overshoot following intense sound exposures   总被引:1,自引:0,他引:1  
Overshoot refers to the poorer detectability of brief signals presented soon after the onset of a masking noise compared to those presented after longer delays. In the present experiment, brief tonal signals were presented 2 or 190 ms following the onset of a broadband masker that was 200 ms in duration. These two conditions of signal delay were tested before and after a series of exposures to a tone intense enough to induce temporary threshold shift (TTS). The magnitude of the overshoot was reduced after the exposure when a TTS of at least 10 dB was induced, but not when smaller amounts of TTS were induced. The reduction in overshoot was due to a decrease in the masked thresholds with the 2-ms delay; masked thresholds with the 190-ms delay were not different pre- and post-exposure. The implication is that the mechanisms responsible for the normal overshoot effect are temporarily inactivated by the same stimulus manipulations that produce a mild exposure-induced hearing loss. Thus the result is the paradox that exposure to intense sounds can produce a loss of signal detectability in certain stimulus conditions and a simultaneous improvement in detectability in other stimulus conditions.  相似文献   
2.
The threshold of a 1250-Hz tonal signal was measured in the presence of five noise bands (each 50 Hz wide, centered at 850, 1050, 1250, 1450, and 1650 Hz) under five conditions of uncertainty about the waveform type ("correlated" or "uncorrelated"), and/or the specific waveform sample to be presented. The waveform type was correlated when the temporal envelopes of all of the noise bands were the same, and was uncorrelated when the temporal envelope of the band centered on the signal differed from the common envelope of the other bands. At the low-uncertainty end of the continuum of conditions, the same waveform type was presented throughout an entire block of trials, and, in addition, the same waveform sample was presented on the two observation intervals of a single trial (but changed across trials). At the high-uncertainty end of the continuum, both the waveform type and the waveform sample were chosen at random for every observation interval. Threshold estimates obtained from trials in which both observation intervals contained the same waveform type were not affected by uncertainty about the waveform sample within a trial, nor by uncertainty about the waveform type introduced across trials. Thus the comodulation masking release, or CMR (the difference in the thresholds obtained with the uncorrelated and correlated waveforms), calculated from these types of trials was robust across all of the uncertainty conditions. However, on those trials in which one correlated interval and one uncorrelated interval were paired, threshold estimates were influenced by a bias for listeners to choose the uncorrelated interval as the signal interval, whether or not it actually contained the signal. This bias reveals the importance of recognizing the contribution of the nonsignal interval in experiments involving masker uncertainty. Parallel results were obtained using the comodulation detection difference (CDD) task. In some conditions, marked individual differences were observed.  相似文献   
3.
Comodulation detection differences using noise-band signals   总被引:1,自引:0,他引:1  
In a variant of the standard paradigm employed to study comodulation masking release (CMR), a narrow noise band was used as a signal in the presence of "cue" bands which had either the same or different temporal envelopes. The number of cue bands present ranged from zero to four; when there were two or four cue bands, they were either all presented at the same overall level or the spectral profile was "scrambled" in a haphazard manner. Different noise samples were presented within and across trials. The result was in the opposite direction from the standard CMR outcome; that is, better performance was obtained when the envelopes of the cue band(s) were uncorrelated with those of the signal band than when they were correlated. These comodulation detection differences (CDDs) ranged from a decibel or two up to 10-12 dB in different conditions, and were generally larger the more cue bands present. Standard CMR conditions, which were run as controls, revealed that the detectability of a tonal signal does not increase as the number of cue bands is increased from one to four-an outcome which differs from those obtained in profile analysis experiments. The data taken with the equal-level and the scrambled-level cues differed little in both the CDD and the CMR conditions. All noise bands were 100 Hz wide, and approximately 250 ms in duration. The signal band in CDD and the masker band in CMR were centered at 2500 Hz. The psychophysical procedure was two-interval forced choice.  相似文献   
4.
Absorption transitions to vibrational levels close to the A state dissociation limit of ICI have been examined using a two-photon sequential absorption technique. The discrete rotational structures of I37 Cl bands to within 0.7 cm?1 of the limit have been selectively excited and analysed. A value of 17557.514 ± 0.030 cm?1 has been obtained for the I(2Po32) + Cl(2Po32) dissociation energy De, relative to the minimum of the ICI ground state potential well. The two-photon technique can be used to excite and display separately the high resolution absorption spectra of different isotopic species of a molecule which are contained in a mixture.  相似文献   
5.
Fluorescence emission analysis (FEA) has proven to be very sensitive for the detection of elastin, collagen and lipids, which are recognized as the major sources of autofluorescence in vascular tissues. FEA has also been reported to detect venous thromboemboli. In this paper we have tested the hypothesis that FEA can reproducibly detect in vivo and in vitro triggered plaque disruption and thrombosis in a rabbit model. Fluorescence emission (FE) spectra, recorded in vivo, detected Russell's viper venom (RVV)-induced transformation of atherosclerotic plaque. FE intensity at 410-490 nm 4 weeks after angioplasty was significantly lower (P < 0.0033 by analysis of variance) in RVV-treated rabbits when compared to control animals with stable plaque. FE spectral profile analyses also demonstrated a significant change in curve shape as demonstrated by polynomial regression analysis (R2 from 0.980 to 0.997). We have also demonstrated an excellent correlation between changes in FE intensity and the structural characteristics detected at different stages of "unstable atherosclerotic plaque" development using multiple regression analysis (R2 = 0.989). Thus, FEA applied in vivo is a sensitive and highly informative diagnostic technique for detection of triggered atherosclerotic plaque disruption and related structural changes, associated with plaque transformation, in a rabbit model.  相似文献   
6.
Masking sounds can be continuously present, gated simultaneously with the signal, or gated somewhat prior to the signal. This continuum of relative onset times was explored using waveforms of the sort commonly employed in studies of comodulation masking release (CMR). There was a 50-Hz masker band centered on the 1250-Hz tonal signal, and four 50-Hz flanker bands centered at 850, 1050, 1450, and 1650 Hz. In some conditions, all four flanker bands had the same temporal envelope, and the masker band either had that same envelope (correlated presentations) or a different envelope (uncorrelated presentations). In other conditions, all five bands had different temporal envelopes (all-uncorrelated presentations). The masker band and/or the four flanker bands were either gated nearly simultaneously with the signal (burst conditions) or were gated prior to the signal by a duration that was systematically varied (fringed conditions). The eight listeners could be partitioned into three groups on the basis of their response to these fringing manipulations. Two listeners (the large fringers) showed a gradual improvement in detectability with increasing fringe duration (called a temporal decline of masking), while three others (the small fringers) showed little improvement in detectability. For the remaining three subjects, there was evidence of a "learning" effect that changed them from large fringers to small fringers over a 10-week period of listening. When present, the temporal decline of masking was greater for the correlated than for the uncorrelated comodulation condition; as a consequence, the difference in detectability between them (the comodulation masking release or CMR) increased with fringe duration. By fringing the masker and flanker bands separately and in combination, it was revealed that the temporal declines of masking were primarily attributable to the fringing of the flanker bands. In contrast, large CMRs required long fringes on both the masker and flanker bands. The above results were obtained with 50-ms signals, but generally similar data were obtained with a signal duration of 240 ms. The difficulties raised for experimentalists and theorists by such long-term practice effects are discussed.  相似文献   
7.
Linear theory analysis and particle-in-cell simulations show that a spatial transverse gradient in the ion drift parallel to the magnetic field, dV(di)/dxOmega(i). Nonlinearly, these waves lead to multiscale spatially coherent structures, substantial cross-field transport, ion energization, and phase-space diffusion. Large spikes are formed in the parallel electric field time series. These signatures are similar to the Fast Auroral Snapshot satellite observations in the upward current region.  相似文献   
8.
9.
The phenomenon of comodulation masking release (CMR) was studied in a series of experiments. When the relative level of the correlated cue band was more than about 10 dB less than that of the masker band, the CMR was abolished. When the duration of the tonal signal was varied with continuous maskers and cues, the course of the standard temporal-integration function (about -10 dB/decade) was followed by both the correlated-cue and the uncorrelated-cue conditions. In a burst masker paradigm employing several burst durations, the data for the correlated-cue condition closely followed the previously determined temporal-integration function. Finally, when the cue band was time delayed more than about 1.6 ms, the CMR began to decline, and it was abolished somewhere between 3 and 15 ms of delay, depending upon the subject. This latter outcome was essentially the same for masker and cue bands of both 75 and 100 Hz in width; in neither instance was there evidence of a cyclic, autocorrelation-like pattern following the period of the envelope. Supplementary experiments revealed two facts: The detectability of a masked narrow-band signal is not improved by the simultaneous presence of a correlated (or uncorrelated) noise band, and a small CMR can be obtained under conditions of forward masking.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号